Article Publish Status: FREE
Abstract Title:

Sodium ascorbate kills Candida albicans in vitro via iron-catalyzed Fenton reaction: importance of oxygenation and metabolism.

Abstract Source:

Future Microbiol. 2016 12 ;11:1535-1547. Epub 2016 Nov 18. PMID: 27855492

Abstract Author(s):

Pinar Avci, Fernanda Freire, Andras Banvolgyi, Eleftherios Mylonakis, Norbert M Wikonkal, Michael R Hamblin

Article Affiliation:

Pinar Avci


AIM: Ascorbate can inhibit growth and even decrease viability of various microbial species including Candida albicans. However the optimum conditions and the mechanism of action are unclear. Materials/methodology: Candida albicans shaken for 90 min in a buffered solution of ascorbate (90 mM) gave a 5-log reduction of cell viability, while there was no killing without shaking, in growth media with different carbon sources or at 4°C. Killing was inhibited by the iron chelator 2,2'-bipyridyl. Hydroxyphenyl fluorescein probe showed the intracellular generation of hydroxyl radicals.

RESULTS/CONCLUSION: Ascorbate-mediated killing of C. albicans depends on oxygenation and metabolism, involves iron-catalyzed generation of hydroxyl radicals via Fenton reaction and depletion of intracellular NADH. Ascorbate could serve as a component of a topical antifungal therapy.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.