Abstract Title:

Ascorbic acid inhibits visceral obesity and nonalcoholic fatty liver disease by activating peroxisome proliferator-activated receptorα in high-fat-diet-fed C57BL/6J mice.

Abstract Source:

Int J Obes (Lond). 2018 Oct 3. Epub 2018 Oct 3. PMID: 30283077

Abstract Author(s):

Hyunghee Lee, Jiwon Ahn, Soon Shik Shin, Michung Yoon

Article Affiliation:

Hyunghee Lee


BACKGROUND/OBJECTIVES: Ascorbic acid is a known cofactor in the biosynthesis of carnitine, a molecule that has an obligatory role in fatty acid oxidation. Our previous studies have demonstrated that obesity is regulated effectively through peroxisome proliferator-activated receptorα (PPARα)-mediated fatty acid β-oxidation. Thus, this study aimed to determine whether ascorbic acid can inhibit obesity and nonalcoholic fatty liver disease (NAFLD) in part through the actions of PPARα.

DESIGN: After C57BL/6J mice received a low-fat diet (LFD, 10% kcal fat), a high-fat diet (HFD, 45% kcal fat), or the same HFD supplemented with ascorbic acid (1% w/w) (HFD-AA) for 15 weeks, variables and determinants of visceral obesity and NAFLD were examined using metabolic measurements, histology, and gene expression.

RESULTS: Compared to HFD-fed obese mice, administration of HFD-AA to obese mice reduced body weight gain, visceral adipose tissue mass, and visceral adipocyte size without affecting food consumption profiles. Concomitantly, circulating ascorbic acid concentrations were significantly higher in HFD-AA mice than in HFD mice. Ascorbic acid supplementation increased the mRNA levels of PPARα and its target enzymes involved in fatty acid β-oxidation in visceral adipose tissues. Consistent with the effects of ascorbic acid on visceral obesity, ascorbic acid not only inhibited hepatic steatosis but also increased the mRNA levels of PPARα-dependent fatty acid β-oxidation genes in livers. Similarly, hepatic inflammation, fibrosis, and apoptosis were also decreased during ascorbic acid-induced inhibition of visceral obesity. In addition, serum levels of alanine aminotransferase, aspartate aminotransferase, total cholesterol, and LDL cholesterol were lower in HFD-AA-fed mice than in those of HFD-fed mice.

CONCLUSIONS: These results suggest that ascorbic acid seems to suppress HFD-induced visceral obesity and NAFLD in part through the activation of PPARα.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.