Article Publish Status: FREE
Abstract Title:

Astragaloside IV ameliorates diabetic nephropathy by modulating the mitochondrial quality control network.

Abstract Source:

PLoS One. 2017 ;12(8):e0182558. Epub 2017 Aug 2. PMID: 28767702

Abstract Author(s):

Xinhui Liu, Wenjing Wang, Gaofeng Song, Xian Wei, Youjia Zeng, Pengxun Han, Dongtao Wang, Mumin Shao, Juan Wu, Huili Sun, Guoliang Xiong, Shunmin Li

Article Affiliation:

Xinhui Liu


The aim of this study was to investigate the effect and possible mechanism of Astragaloside IV (AS-IV) on retarding the progression of diabetic nephropathy (DN) in a type 2 diabetic animal model, db/db mice. Eight-week-old male db/db diabetic mice and their nondiabetic littermate control db/m mice were used in the present study. AS-IV was administered to the db/db mice by adding it to standard feed at a dose of 1g/kg for 12 weeks. Renal injury was assessed by urinary albumin excretion (UAE) and Periodic acid-Schiff staining. The protein expression levels of mitochondrial quality-control-associated proteins were evaluated using Western blotting and immunohistochemical staining analysis. At the end of the experiment, db/db mice showed overt renal injury, as evidenced by increased UAE, increased urinary N-acetyl-β-D-glucosaminidase (NAG), expansion of mesangial matrix, and increased renal tubular area. AS-IV administration significantly reduced UAE and urinary NAG and ameliorated the renal pathologic injury seen in db/db mice. Furthermore, the expression of dynamin-related protein 1 (Drp-1), mitochondrialfission protein 1 (Fis-1), and mitochondrial fission factor (MFF), the main regulators of mitochondrial fission, was significantly increased in db/db mice. Moreover, PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy was abnormally activated in db/db mice. AS-IV significantly reduced renal Drp-1, Fis-1, and MFF expression and downregulated PINK1/Parkin-mediated mitophagy in db/db mice. However, mitochondrial biogenesis and mitochondrial fusion-associated protein levels were not significantly different between db/m and db/db mice in our study, with or without AS-IV treatment. In conclusion, administration of AS-IV could retard DN progression in type 2 diabetes mice, which might be associated with restoration of the mitochondrial quality control network.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.