n/a
Abstract Title:

Astragaloside IV inhibits hepatocellular carcinoma by continually suppressing the development of fibrosis and regulating pSmad3C/3L and Nrf2/HO-1 pathways.

Abstract Source:

J Ethnopharmacol. 2021 Jun 19 ;279:114350. Epub 2021 Jun 19. PMID: 34157326

Abstract Author(s):

Chong Zhang, Lili Li, Shu Hou, Zhenghao Shi, Wenjing Xu, Qin Wang, Yinghao He, Yongfang Gong, Zhirui Fang, Yan Yang

Article Affiliation:

Chong Zhang

Abstract:

ETHNOPHARMACOLOGICAL RELEVANCE: Astragalus is a medicinal herb used in China for the prevention and treatment of diseases such as diabetes and cancer. As one of the main active ingredients of astragalus, Astragaloside IV (AS-IV) has a wide range of pharmacological effects, including anti-inflammation and anti-cancer effects.

AIM OF THE STUDY: Different phosphorylated forms of Smad3 differentially regulate the progression of hepatic carcinoma. The phosphorylation of the COOH-terminal of Smad3 (pSmad3C) and activation of the Nrf2/HO-1 pathway inhibits hepatic carcinoma, while phosphorylation of the linker region of Smad3 (pSmad3L) promotes progression. Thus, pSmad3C/3L and Nrf2/HO-1 pathways are potential targets for drug of anti-cancer development. AS-IV is anti-apoptotic and can inhibit hepatocellular carcinoma cell (HCC) proliferation, invasion, and tumor growth in nude mice. However, it is not clear whether AS-IV has a therapeutic effect on inhibiting the progression of primary liver cancer by regulating the pSmad3C/3L and Nrf2/HO-1 pathway. The purpose of this study is to investigate whether AS-IV inhibits hepatocellular carcinoma by regulating pSmad3C/3L and Nrf2/HO-1 pathway.

MATERIALS AND METHODS: primary liver cancer in mice induced by DEN/CCl/CHOH (DCC) and HSC-T6/HepG2 cell models activated by TGF-βwas investigated for the mechanisms of AS-IV. In vivo assays included liver biopsy, histopathology and post-mortem analysis included immunohistochemistry, immunofluorescent, and Western blotting analysis, and in vitro assays included immunofluorescent, and Western blotting analysis.

RESULTS: AS-IV significantly inhibited the development of primary liver cancer, reflecting improved liver biopsy, histopathology. The incidence and multiplicity of primary liver cancer were markedly decreased by AS-IV treatment at the 20th week. AS-IV had observable effects on the TGF-β/Smad and Nrf2/HO-1 expression in vivo, especially up-regulated pSmad3C, pNrf2, HO-1, and NQO1, while it down-regulated pSmad2C, pSmad2L, pSmad3L, PAI-1, andα-SMA at the 12th week and the 20th week. Furthermore, in vitro analysis further confirmed that AS-IV regulated the expression of pSmad3C/3L and Nrf2/HO-1 pathway in HSC-T6 and HepG2 cells activated by TGF-β.

CONCLUSION: AS-IV administration delays the occurrence of primary liver cancer by continually suppressing the development of fibrosis, the mechanism of the therapeutic effect involving the regulation of the pSmad3C/3L and Nrf2/HO-1 pathways, especially in regulation reversibility and antagonism of pSmad3C and pSmad3L and promoting the phosphorylation of Nrf2.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.