Abstract Title:

Bellis perennis extract mitigates UVA-induced keratinocyte damage: Photoprotective and immunomodulatory effects.

Abstract Source:

J Photochem Photobiol B. 2021 Aug ;221:112247. Epub 2021 Jun 19. PMID: 34175580

Abstract Author(s):

Vivian Maria Souza de Carvalho, Joyce L Covre, Rebeca D Correia-Silva, Izabella Lice, Mab P Corrêa, Andréia M Leopoldino, Cristiane D Gil

Article Affiliation:

Vivian Maria Souza de Carvalho


A need exists for further research elucidating the benefits of environmentally safe photoprotective agents against ultraviolet (UV) exposure, and plant extracts represent a human-friendly alternative formulation. This study was designed to evaluate the potential use of Bellis perennis extract (BPE), from the Asteraceae family, known as the common daisy or the English daisy, in cosmeceuticals as a photoprotective factor, using an in vitro model of UVA-induced keratinocyte damage. Human skin keratinocytes (HaCaT cell line) were incubated with BPE at 0.01, 0.1, or 1% in Dulbecco's Modified Eagle Medium (DMEM), and after 15 min they were submitted to UVA radiation at 5, 10, and 15 J/cmdoses, respectively. For comparative purposes, Polypodium leucotomos extract (PLE), known as the fern, was used as a positive control in assessing the photoprotective effect. After 24 h of UVA exposure, cell viability (MTT and LDH assays), levels of cleaved caspase-3, cyclooxygenase-2, IL-6, reactive oxygen species (ROS) and antioxidant enzyme (catalase, SOD, and glutathione peroxidase) activity were determined. UVA radiation at 5, 10, and 15 J/cmdoses reduced cell viability to 63%, 43%, and 23%, respectively; we selected 10 J/cmfor our purposes. After 24 h of UVA exposure, treatment with 1% BPE and 1% PLE significantly recovered cell viability (p < 0.05). Furthermore, treatment was associated with lower cleaved caspase-3 and ROS levels, higher catalase activity, and lower IL-6 levels in the treated UVA keratinocytes compared with the untreated UVA group (p < 0.01). Our results demonstrate photoprotective and immunomodulatory effects of BPE in skin keratinocytes and support its use as a bioactive agent in cosmetic formulations to prevent skin damage caused by exposure to the UV light.

Study Type : Human In Vitro

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.