n/a
Abstract Title:

Berberine Improves Behavioral and Cognitive Deficits in a Mouse Model of Alzheimer's Disease via Regulation ofβ-Amyloid Production and Endoplasmic Reticulum Stress.

Abstract Source:

ACS Chem Neurosci. 2021 May 13. Epub 2021 May 13. PMID: 33983710

Abstract Author(s):

Yubin Liang, Chenghui Ye, Yuling Chen, Ying Chen, Shiyuan Diao, Min Huang

Article Affiliation:

Yubin Liang

Abstract:

Alzheimer's disease (AD) is a neurodegenerative disease characterized byβamyloid (Aβ), neurofibrillary tangles, and neuronal cell death. Aggressive Aβ accumulation accelerates senile plaque formation and perturbs endoplasmic reticulum (ER) function. Aβ accumulation-induced changes stimulate the unfolded protein response (UPR), which can trigger neuronal apoptosis. Protein kinase RNA-like endoplasmic reticulum kinase (PERK), whose activation is stress-dependent, increases the phosphorylation of eukaryotic translation initiation factor-2α (eIF2α). eIF2α promotes the synthesis of β-site APP cleavage enzyme 1 (BACE1), which in turn facilitates Aβ generation and subsequent neuronal apoptosis. In this study, we investigated whether berberine could improve cognitive deficits in the triple-transgenic mouse model of Alzheimer's disease (3 × Tg AD) mice. Our results revealed that berberine treatment may inhibit PERK/eIF2α signaling-mediated BACE1 translation, thus reducing Aβ production and resultant neuronal apoptosis. Further, berberine may have neuroprotective effects, via attenuation of ER stress and oxidative stress. In sum, our study demonstrates the therapeutic potential of berberine for treating AD.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.