n/a
Abstract Title:

Berberine Improves Cognitive Deficiency and Muscular Dysfunction via Activation of the AMPK/SIRT1/PGC-1a Pathway in Skeletal Muscle from Naturally Aging Rats.

Abstract Source:

J Nutr Health Aging. 2018 ;22(6):710-717. PMID: 29806860

Abstract Author(s):

Y Yu, Y Zhao, F Teng, J Li, Y Guan, J Xu, X Lv, F Guan, M Zhang, L Chen

Article Affiliation:

Y Yu

Abstract:

OBJECTIVE: The manifestations of aging include cognitive deficits and muscular dysfunction, which are closely linked to impairment of mitochondrial biogenesis. Berberine, an isoquinoline alkaloid, presents multiple anti-diabetic pharmacological effects. Evidence has indicated that insulin resistance and cognitive impairment share the same pathogenesis, and berberine could reverse glucose metabolism abnormalities and muscle mitochondrial dysfunction induced by a high-fat diet. This study was used to investigate whether berberine could be used as an anti-aging drug to prevent cognitive deficits and muscular dysfunction in natural aging.

METHODS: Biochemical indicators and an intraperitoneal glucose tolerance test were tested in 5-month-old rats (5 mo group), 24-month-old rats (24 mo group) and 24-month-old rats that had undergone 6 months of berberine treatment (BBR group). A Morris water maze test was conducted to assess the cognitive ability of the rats. Insulin resistance in whole-body was evaluated by intraperitoneal glucose tolerance test (IPGTT). The morphology of the skeletal muscle tissue was observed by hematoxylin-eosin (HE) staining. The levels of total cholesterol, triglyceride, ATP and reactive oxygen species (ROS) were assessed with corresponding reagent kits. The protein expressions of GLUT4, AMPK, SIRT1 and PGC-1α in skeletal muscle were examined by Western blot.

RESULTS: The results showed that administration of berberine for 6 months significantly improved cognitive deficits and insulin resistance in naturally aging rats (p<0.01). Furthermore, berberine treatment helped normalize the disordered alignment and the decreased number of muscle fibers (p<0.01) in the skeletal muscle of 24 mo rats. Berberine decreased the levels of ROS in both the serum and the skeletal muscle of 24 mo rats (p<0.01). Berberine increased the protein expression of p-AMPK, SIRT1 and PGC-1α and increased the production of ATP in the skeletal muscle of aging rats (p<0.01).

CONCLUSIONS: Berberine markedly ameliorates aging-related reductions in cognitive ability and muscular function, and the activation of the AMPK/SIRT1/PGC-1α pathway in skeletal muscle may be the underlying protective mechanism of berberine on muscular function.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.