Abstract Title:

Potent induction of apoptosis by beta-lapachone in human multiple myeloma cell lines and patient cells.

Abstract Source:

Mol Med. 2000 Dec;6(12):1008-15. PMID: 11474117

Abstract Author(s):

Y Li, C J Li, D Yu, A B Pardee

Abstract:

BACKGROUND: Human multiple myeloma (MM) remains an incurable hematological malignancy. We have reported that beta-lapachone, a pure compound derived from a plant, can induce cell death in a variety of human carcinoma cells, including ovary, colon, lung, prostate, pancreas, and breast, suggesting a wide spectrum of anticancer activity. MATERIALS AND METHODS: We first studied antisurvival effects of beta-lapachone in human MM cells by colony formation assay. To determine whether the differential inhibition of colony formation occurs through antiproliferative activity, we performed MTT assays. The cytotoxicity of beta-lapachone on human peripheral blood mononuclear cells was also measured by MTT assay. To determine whether the cell death induced by beta-lapachone occurs through necrosis or apoptosis, we used the propidium iodide staining procedure to determine the sub-GI fraction, Annexin-V staining for externalization of phosphatidylserine, and fragmentation of cellular genomic DNA subjected to gel electrophoresis. To investigate the mechanism of anti-MM activity, we examined Bcl-2 expression, cytochrome C release, and poly (ADP ribose) polymerase cleavage by Western blot assay. RESULTS: We found that beta-lapachone (less than 4 microM) inhibits cell survival and proliferation by triggering cell death with characteristics of apoptosis in ARH-77, HS Sultan, and MM.1S cell lines, in freshly derived patient MM cells (MM.As), MM cell lines resistant to dexamethasone (MM.1R), doxorubicin (DOX.40), mitoxantrone (MR.20), and mephalan (LR5). Importantly, after treatment with beta-lapachone, we observed no apoptosis in peripheral blood mononuclear cells in either quiescent or proliferative states, freshly isolated from healthy donors. In beta-lapachone treated ARH-77, cytochrome C was released from mitochondria to cytosol, and poly (ADP ribose) polymerase was cleaved, signature events of apoptosis. Finally, the apoptosis induced by beta-lapachone in MM cells was not blocked by either interleukin-6 or Bcl-2, which confer multidrug resistance in MM. CONCLUSIONS: Our results suggest potential therapeutic application of beta-lapachone against MM, particularly to overcome drug resistance in relapsed patients.

Study Type : In Vitro Study
Additional Links
Pharmacological Actions : Apoptotic : CK(5217) : AC(3846)

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.