n/a
Abstract Title:

Effects ofβ-Sitosterol from Corn Silk on TGF-β1-Induced Epithelial-Mesenchymal Transition in Lung Alveolar Epithelial Cells.

Abstract Source:

J Agric Food Chem. 2019 Sep 4 ;67(35):9789-9795. Epub 2019 Aug 19. PMID: 31373816

Abstract Author(s):

Yong Joo Park, In Jae Bang, Mi Ho Jeong, Ha Ryong Kim, Da Eun Lee, Jong Hwan Kwak, Kyu Hyuck Chung

Article Affiliation:

Yong Joo Park

Abstract:

Pulmonary fibrosis is a chronic lung disease characterized by abnormal accumulation of the extracellular matrix (ECM). Chronic damage of the alveolar epithelium leads to a process called"epithelial-mesenchymal transition"(EMT) and increases synthesis and deposition of ECM proteins. Therefore, inhibition of EMT might be a promising therapeutic approach for the treatment of pulmonary fibrosis.β-Sitosterol is one of the most abundant phytosterols in the plant kingdom and the major constituent in corn silk, which is derived from the stigma and style of maize (). In this study, we elucidated thatβ-sitosterol inhibited transforming growth factor-β1 (TGF-β1)-induced EMT and consequently had an antifibrotic effect. β-Sitosterol (1-10 μg/mL) significantly downregulated the TGF-β1-induced fibrotic proteins, such as collagen, fibronectin, and α-smooth muscle actin in human alveolar epithelial cells (0.01). After 24 h, relative wound density (RWD) was increased in TGF-β1 treated group (82.16 ± 5.70) compare to the control group (64.63 ± 2.21), but RWD was decreased in β-sitosterol cotreated group (10 μg/mL: 71.54 ± 7.39; 20 μg/mL: 65.69 ± 6.42). In addition, the changes of the TGF-β1-induced morphological shape and protein expression of EMT markers,-cadherin, vimentin, and-cadherin, were significantly blocked byβ-sitosterol treatment (0.01). The effects ofβ-sitosterol on EMT were found to be associated with the TGF-β1/Snail pathway, which is regulated by Smad and non-Smad signaling pathways. Taken together, these findings suggest that β-sitosterol can be used to attenuate pulmonary fibrosis through suppression of EMT by inhibiting the TGF-β1/Snail pathway.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.