n/a
Abstract Title:

Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo.

Abstract Source:

Environ Pollut. 2017 Nov 13. Epub 2017 Nov 13. PMID: 29146198

Abstract Author(s):

Yin-Feng Zhang, Xiao-Min Ren, Yuan-Yuan Li, Xiao-Fang Yao, Chuan-Hai Li, Zhan-Fen Qin, Liang-Hong Guo

Article Affiliation:

Yin-Feng Zhang

Abstract:

The wide use of the alternatives to bisphenol A (BPA) has raised concerns about their potential toxicities. Considering the disrupting activity of BPA on thyroid hormone (TH) signaling, we investigated whether bisphenol S (BPS) and bisphenol F (BPF), two leading alternatives, could interfere with TH signaling pathway using a series of assays in vitro and in vivo. In the fluorescence competitive binding assay, we found BPS and BPF, like BPA, bound to TH receptors (TRα and TRβ), with the binding potencies an order of magnitude lower than BPA (BPA > BPF > BPS). Molecular docking data also show their binding potencies to TRs. In the coactivator recruitment assay, BPS and BPF recruited coactivator to TRβ but not TRα, with weaker potencies than BPA. Correspondingly, agonistic actions of the three bisphenols in the absence or presence of T3 were observed in the TR-mediated reporter gene transcription assay. Also, all the three bisphenols induced TH-dependent GH3 cell proliferation, whereas BPA and BPF inhibited T3 induction in the presence of T3. As for in vivo assay, the three bisphenols like T3 induced TH-response gene transcription in Pelophylax nigromaculatus tadpoles, but in the presence of T3 altered T3-induced gene transcription in a biphasic concentration-response manner. These results for the first time demonstrate that BPS and BPF, like BPA, have potential to interfere with TH signaling pathway, i.e., they generally activate THsignaling in the absence of T3, but in the presence of TH, display agonistic or/and antagonistic actions under certain condition. Our study highlights the potential risks of BPS and BPF as BPA alternatives.

Study Type : Animal Study, In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.