n/a
Abstract Title:

Bisphenol A induces DNA damage in cells exerting immune surveillance functions at peripheral and central level.

Abstract Source:

Chemosphere. 2020 Sep ;254:126819. Epub 2020 Apr 18. PMID: 32334263

Abstract Author(s):

Paola Di Pietro, Raffaella D'Auria, Andrea Viggiano, Elena Ciaglia, Rosaria Meccariello, Rossana Dello Russo, Annibale Alessandro Puca, Carmine Vecchione, Stefania Lucia Nori, Antonietta Santoro

Article Affiliation:

Paola Di Pietro

Abstract:

Bisphenol A (BPA) is a synthetic xenoestrogen diffused worldwide. Humans are chronically exposed to low doses of BPA from food and drinks, thus BPA accumulates in tissues posing human health risk. In this study, we investigated the effects of BPA on peripheral blood mononuclear cells (PBMC) from human healthy donors, and in glia and microglia of rat offspring at postnatal day 17 (17PND) from pregnant females who received BPA soon after coupling and during lactation and weaning. Results indicated that BPA affected Phytoemagglutinin (PHA) stimulated PBMC proliferation causing an S-phase cell cycle accumulation at nanomolar concentrations while BPA was almost ineffective in resting PBMC. Furthermore, BPA induced chromosome aberrations and the appearance of shattered cells characterized by high number of fragmented and pulverized chromosomes, suggesting that the compound could cause a massive genomic rearrangement by inducing catastrophic events. The BPA-induced DNA damage was observed mainly in TCD4+ and TCD8+ subsets of T lymphocytes and was mediated by the increase of ERK1/2 phosphorylation, p21/Waf1 and PARP1 protein expression. Intriguingly, we observed for the first time that BPA-induced effects were associated to a sex specific modulation of ERα and ERβ in human PBMC. Immunofluorescence analysis of rat hippocampus corroborated in vitro findings showing that BPA induced ɣH2AX phosphorylation in microglia and astrocytosis by decreasing ERα expression within the dentate gyrus. Overall these results suggest that BPA can alter immune surveillance functions at both peripheral and central level with a potential risk for cancer, neuroinflammation and neurodegeneration.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.