n/a
Article Publish Status: FREE
Abstract Title:

Bisphenol A promotes autophagy in ovarian granulosa cells by inducing AMPK/mTOR/ULK1 signalling pathway.

Abstract Source:

Environ Int. 2020 Dec 30 ;147:106298. Epub 2020 Dec 30. PMID: 33387880

Abstract Author(s):

Miaoling Lin, Rui Hua, Jing Ma, Yao Zhou, Pei Li, Xiya Xu, Zhiqiang Yu, Song Quan

Article Affiliation:

Miaoling Lin

Abstract:

BACKGROUND: Bisphenol A (BPA) is a widespread endocrine-disrupting chemical with estrogen like effects, which could interfere with the human reproductive system by disrupting the normal function of granulosa cells (GCs) leading to abnormal ovarian function. However, the mechanism of its toxicity on human GCs has not been clearly described thus far.

METHODS: 106 normogonadotropic infertile women undergoing their first in-vitro fertilization-embryo transfer (IVF-ET) cycle were recruited. Urinary BPA level and the early outcomes of IVF-ET were analysed. Patients were divided to low and high BPA exposure groups using the median urinary BPA concentration as the cut-off value. In-vivo and in-vitro studies were conducted using mice and human granulosa cell line (KGN cells). Female Kunming mice approximately 6-8 weeks of age were poisoned with BPA at different dosages (1, 10 or 100 μg/kg) by oral gavage once daily for 2 weeks, while KGN cells were exposed to BPA at the concentration of 1, 10 or 100 nM for 24 h, 48 h or 72 h. BPA-induced ovarian morphologic changes were analysed by histopathology investigation. Cell viability and apoptosis were evaluated using CCK-8, TUNEL and flowcytometric, respectively. Hormone levels were determined using ELISA and the molecular mechanism studies were conducted using immunofluorescence, RT-PCR and western blots.

RESULTS: The oocyte retrieval rate, maturation rate and embryo implantation rate significantly decreased with the higher level of urinary BPA concentration. Peak E2 level was lower in high BPA group, but no statistical significance could be observed. In BPA treated mice, cystic dilation of the follicles with a decreased number of GCs could be observed histopathologically. Decreased E2, P4 and AMH level and GCs autophagy could be detected both in-vivo and in-vitro with the activation of AMPK/mTOR/ULK1 signalling pathway. As being confirmed in KGN cells, phosphorylated AMPK and ULK1 increased while phosphorylated mTOR decreased, and by inhibition autophagy using knockdown of AMPK or 3-MA, adverse effects of BPA exposure in-vitro could be reversed.

CONCLUSION: BPA exposure might abnormally influence human ovarian functions leading to abnormal folliculogenesis by activation of autophagy in GCs through AMPK/mTOR/ULK1 pathway.

Study Type : Animal Study, In Vitro Study
Additional Links

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.