Abstract Title:

Carnosic acid attenuates neuropathic pain in rat through the activation of spinal sirtuin1 and down-regulation of p66shc expression.

Abstract Source:

Neurochem Int. 2016 Jan 19. Epub 2016 Jan 19. PMID: 26804443

Abstract Author(s):

Shuang-Dong Chen, Bin-Bin Ji, Yi-Xiu Yan, Xin He, Kun-Yuan Han, Qin-Xue Dai, Ming-Xiao Zhang, Yun-Chang Mo, Jun-Lu Wang

Article Affiliation:

Shuang-Dong Chen

Abstract:

BACKGROUND: It has been reported that carnosic acid (CA) exhibits a range of biological activities including hepatoprotective, antioxidant and anti-inflammatory. However, the effect of carnosic acid in neuropathic pain remained elusive.

METHODS: A neuropathic pain model of chronic constriction injury (CCI) was established in adult male Sprague-Dawley rats. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were recorded, and western blot was performed to detect sirtuin1 and p66shc content.

RESULTS: Intrathecal administration of carnosic acid attenuated mechanical allodynia and thermal hyperalgesia in rats following chronic constriction injury. Interestingly, carnosic acid analgesic effect was positively associated with spinal sirtuin1 activation; however, p66shc was inhibited by carnosic acid in the spinal cord. In additional, sirtuin1 inhibitor EX-527 reversed the anti-nociceptive effect of carnosic acid.

CONCLUSIONS: Carnosic acid is effective in the treatment of the established CCI-induced pain. It may be possible that spinal sirtuin1 activition by carnosic acid attenuates neuropathic pain through a mechanism involving the down-regulation of p66shc expression.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.