Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Chronic consumption of flavanol-rich cocoa improves endothelial function and decreases vascular cell adhesion molecule in hypercholesterolemic postmenopausal women.

Abstract Source:

Breast Cancer Res Treat. 2009 Sep;117(1):111-9. Epub 2008 Oct 18. PMID: 16794456

Abstract Author(s):

Janice F Wang-Polagruto, Amparo C Villablanca, John A Polagruto, Luke Lee, Roberta R Holt, Heather R Schrader, Jodi L Ensunsa, Francene M Steinberg, Harold H Schmitz, Carl L Keen

Abstract:

Endothelial dysfunction characterizes many disease states including subclinical atherosclerosis. The consumption of flavanol-rich cocoa and cocoa-based products has been shown to improve endothelial function in both compromised and otherwise normal, healthy individuals when administered either acutely or over a period of several days, or weeks. Women experience increased risk for cardiovascular disease after menopause, which can be associated with endothelial dysfunction. Whether a flavanol-rich cocoa-based product can improve endothelial function in hypercholesterolemic postmenopausal women is not known. The purpose of the present study was to determine whether chronic dietary administration of flavanol-rich cocoa improves endothelial function and markers of cardiovascular health in hypercholesterolemic postmenopausal women. Thirty-two postmenopausal hypercholesterolemic women were randomly assigned to consume a high-flavanol cocoa beverage (high cocoa flavanols (CF)--446 mg of total flavanols), or a low-flavanol cocoa beverage (low CF--43 mg of total flavanols) for 6 weeks in a double-blind study (n=16 per group). Endothelial function was determined by brachial artery-reactive hyperemia. Plasma was analyzed for lipids (total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol), hormones (follicle-stimulating hormone), total nitrate/nitrite, activation of cellular adhesion markers (vascular cell adhesion molecule 1, intercellular adhesion molecule 1, E-Selectin, P-Selectin), and platelet function and reactivity. Changes in these plasma markers were then correlated to brachial reactivity. Brachial artery hyperemic blood flow increased significantly by 76% (P<0.05 vs. baseline) after the 6-week cocoa intervention in the high CF group, compared with 32% in the low CF cocoa group (P=ns vs. baseline). The 2.4-fold increase in hyperemic blood flow with high CF cocoa closely correlated (r2=0.8) with a significant decrease (11%) in plasma levels of soluble vascular cell adhesion molecule-1. Similar responses were not observed after chronic use of low CF. There were no significant differences between high and low CF in other biochemical markers and parameters measured. This study is the first to identify beneficial vascular effects of flavanol-rich cocoa consumption in hypercholesterolemic postmenopausal women. In addition, our results suggest that reductions in plasma soluble vascular cell adhesion molecule-1 after chronic consumption of a flavanol-rich cocoa may be mechanistically linked to improved vascular reactivity.

 

Study Type : Human Study

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.