n/a
Abstract Title:

Crocetin attenuates the oxidative stress, inflammation and apoptosisin arsenic trioxide-induced nephrotoxic rats: Implication of PI3K/AKT pathway.

Abstract Source:

Int Immunopharmacol. 2020 Sep 9 ;88:106959. Epub 2020 Sep 9. PMID: 32919218

Abstract Author(s):

Panpan Liu, Yurun Xue, Bin Zheng, Yingran Liang, Jianping Zhang, Jing Shi, Xi Chu, Xue Han, Li Chu

Article Affiliation:

Panpan Liu

Abstract:

Arsenic trioxide (ATO)-induced renal toxicity through oxidative stress and apoptosis restricts the therapeutic action of acute myelogenous leukemia. Crocetin (Crt) possesses antioxidant and antiapoptosis properties, and has certain renal protective effects, but it has not been reported that it has protective effect on renal injury caused by ATO. The current study explored the effects and mechanisms of Crt on kidney damage induced by ATO. Fifty Sprague-Dawley rats were randomly divided into five groups. Adult rats were given Crt concurrently with ATO for 1 week. On the 8th day, rats were killed and blood and kidney tissues were collected. Histopathological changes were measured, and kidneytissues and serum were used to determine renal function and antioxidant enzyme activity. In addition, the protein expression levels of P-PI3K, PI3K, P-AKT, AKT, CytC, Bax, Bcl-2 and Caspase-3 were determined via western blot analysis. Results revealed ATO induced renal morphological alterations and activated serum BUN and CRE. Compared with the control group, ROS, MDA, IL-1β, TNF-α, protein carbonyls (PC), lipid hydroperoxides (LOOH) and arsenic concentration levels were found to be significantly increased and SOD, CAT, GSH-Px, GSH and total sulphydryl groups (TSH) levels were attenuated in the ATO group. Crt markedly reduced oxidative stress in ATO-induced nephrotoxicity. Further, ATO induced apoptosis by significantly enhancing CytC, Bax and Caspase-3 and inhibiting Bcl-2. Administration with Crt markedly improved the expression of apoptosis factor. Moreover, Crt treatment stimulated the expressions of P-PI3K, PI3K, P-AKT, AKT induced by ATO. This study indicates Crt could prevent renal injury caused by ATO through inhibiting oxidative stress,inflammation and apoptosis, and its mechanism may be related to activation of PI3K/Akt signaling pathway.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.