Article Publish Status: FREE
Abstract Title:

Curcumin acts synergistically with fluconazole to sensitize a clinical isolate of Candida albicans showing a MDR phenotype.

Abstract Source:

Med Mycol. 2012 Jan ;50(1):26-32. Epub 2011 May 4. PMID: 21539505

Abstract Author(s):

A S Garcia-Gomes, J A R Curvelo, R M A Soares, A Ferreira-Pereira

Article Affiliation:

A S Garcia-Gomes

Abstract:

The primary objective of this work was to evaluate the capability of curcumin, a natural compound found in the Curcuma longa plant, to sensitize a clinical isolate of Candida albicans, which was found to have a high resistance to fluconazole. In addition, we assessed whether the resistance of this isolate was the result of the existence of efflux pumps, which could confer a multiple drug resistance phenotype. To evaluate azole resistance, we used the Clinical Laboratory Standard Institute (CLSI) MIC assays procedures with minor modifications. For evaluation of synergistic interaction of curcumin and fluconazole, checkerboard experiments were employed. Nile red and Rhodamine 6G accumulation assays were used to evaluate efflux pump activity. Curcumin was found to have a great capability to inhibit fluconazole resistance of the isolate of C. albicans. It was capable of restoring its sensitivity to this azole when used at 11μM. Analysis with different azoles and the two indicated dyes showed that an efflux pump could be acting and contributing to the resistance of this isolate to fluconazole. The results suggest that a major facilitator superfamily (MFS) transporter might be involved in this process.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.