Abstract Title:

Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma.

Abstract Source:

J Neurooncol. 2007 Dec;85(3):263-70. Epub 2007 Jun 27. PMID: 17594054

Abstract Author(s):

Enyu Liu, Jing Wu, Weidong Cao, Jianning Zhang, Weiping Liu, Xiaofan Jiang, Xiang Zhang

Article Affiliation:

Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University (Neurosurgical Institute of Chinese PLA), Xian, PR China.

Abstract:

Gliomas are the most common and lethal primary tumors of the central nervous system (CNS). Despite current rigorous treatment protocols, effect of chemotherapy has failed to improve patient outcome significantly. Curcumin is a potent antioxidant that possesses both anti-inflammatory and anti-tumor activities, can suppress the initiation, promotion, and metastasis of different tumors. Its anti-tumor properties in various cancer models and negligible toxicity in normal cells make it a promising chemotherapeutic candidate. But the effect and the molecular mechanism of curcumin on gliomas are still recognized limitedly. The goal of the study is to elucidate the inhibitory effect and possible mechanisms of curcumin on glioma. After the treatment of curcumin, glioma cells U251 growth in vitro were significantly inhibited in a dose-dependent manner, and the low dose of curcumin induced G2/M cell cycle arrest. The high dose of curcumin not only enhanced G2/M cell cycle arrest, but also induced S phase of cell cycle arrest. But no obvious pre-G1 peak was observed at the different doses of curcumin. Genome DNA electrophoresis further confirmed that no DNA ladder was formed after the treatment of curcumin in U251 cells. Results of Western blot analysis demonstrated that ING4 expression was almost undetectable in U251 cells, but significantly up-regulated during cell cycle arrest induced by curcumin, and p53 expression was up-regulated followed by induction of p21 WAF-1/CIP-1 and ING4. The results demonstrate that curcumin exerts inhibitory action on glioma cell growth and proliferation via induction of cell cycle arrest instead of induction of apoptosis in a p53-dependent manner, and ING4 possibly is in part involved in the signal pathways.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.