Abstract Title:

Protective effects of curcumin against oxidative damage on skin cells in vitro: its implication for wound healing.

Abstract Source:

J Trauma. 2001 Nov;51(5):927-31. PMID: 11706342

Abstract Author(s):

T T Phan, P See, S T Lee, S Y Chan

Article Affiliation:

Department of Plastic Surgery/National Burns Centre, Singapore General Hospital. [email protected]

Abstract:

BACKGROUND: Curcumin, isolated from turmeric, has been known to possess many pharmacologic properties. It has been proven to exhibit remarkable anticarcinogenic, anti-inflammatory, and antioxidant properties. Turmeric curcumin may be a good potential agent for wound healing.

METHODS: To further understand its therapeutic mechanisms on wound healing, the antioxidant effects of curcumin on hydrogen peroxide (H2O2) and hypoxanthine-xanthine oxidase induced damage to cultured human keratinocytes and fibroblasts were investigated. Cell viability was assessed by colorimetric assay and quantification of lactate dehydrogenase release.

RESULTS: Exposure of human keratinocytes to curcumin at 10 microg/mL showed significant protective effect against hydrogen peroxide. Interestingly, exposure of human dermal fibroblasts to curcumin at 2.5 microg/mL showed significant protective effects against hydrogen peroxide. No protective effects of curcumin on either fibroblasts or keratinocytes against hypoxanthine-xanthine oxidase induced damage were found in our present studies.

CONCLUSION: The findings indicate that curcumin indeed possessed powerful inhibition against hydrogen peroxide damage in human keratinocytes and fibroblasts.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.