Abstract Title:

Curcumin improves early functional results after experimental spinal cord injury.

Abstract Source:

Acta Neurochir (Wien). 2010 Sep;152(9):1583-90; discussion 1590. Epub 2010 Jun 10. PMID: 20535508

Abstract Author(s):

Berker Cemil, Kivanc Topuz, Mehmet Nusret Demircan, Gokhan Kurt, Kagan Tun, Murat Kutlay, Osman Ipcioglu, Zafer Kucukodaci

Article Affiliation:

Department of Neurosurgery, Faculty of Medicine, Fatih University, 06510 Emek, Ankara, Turkey. [email protected]

Abstract:

BACKGROUND: Curcumin is a polyphenol extracted from the rhizome of Curcuma longa and well known as a multifunctional drug with anti-oxidative, anticancerous, and anti-inflammatory activities. The aim of the study was to evaluate and compare the effects of the use of the curcumin and the methylprednisolone sodium succinate (MPSS) functionally, biochemically, and pathologically after experimental spinal cord injury (SCI).

METHOD: Forty rats were randomly allocated into five groups. Group 1 was performed only laminectomy. Group 2 was introduced 70-g closing force aneurysm clip injury. Group 3 was given 30 mg/kg MPSS intraperitoneally immediately after the trauma. Group 4 was given 200 mg/kg of curcumin immediately after the trauma. Group 5 was the vehicle, and immediately after trauma, 1 mL of rice bran oil was injected. The animals were examined by inclined plane score and Basso-Beattie-Bresnahan scale 24 h after the trauma. At the end of the experiment, spinal cord tissue samples were harvested to analyze tissue concentrations of malondialdehyde (MDA) levels, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) activity, and catalase (CAT) activity and pathological evaluation.

FINDINGS: Curcumin treatment improved neurologic outcome, which was supported by decreased level of tissue MDA and increased levels of tissue GSH-Px, SOD, and CAT activity. Light microscopy results also showed preservation of tissue structure in the treatment group.

CONCLUSIONS: This study showed the neuroprotective effects of curcumin on experimental SCI model. By increasing tissue levels of GSH-Px, SOD, and CAT, curcumin seems to reduce the effects of injury to the spinal cord, which may be beneficial for neuronal survival.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.