Abstract Title:

Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction.

Abstract Source:

FEBS Lett. 2002 Feb 13;512(1-3):334-40. PMID: 11852106

Abstract Author(s):

Tathagata Choudhuri, Suman Pal, Munna L Agwarwal, Tanya Das, Gaurisankar Sa

Article Affiliation:

Animal Physiology Section, Bose Institute, P-1/12 CIT Scheme VII M, 700 054, Kolkata, India.

Abstract:

The aim of this study was to determine the mechanisms of curcumin-induced human breast cancer cell apoptosis. From quantitative image analysis data showing an increase in the percentage of cells with a sub-G0/G1 DNA content, we demonstrated curcumin-induced apoptosis in the breast cancer cell line MCF-7, in which expression of wild-type p53 could be induced. Apoptosis was accompanied by an increase in p53 level as well as its DNA-binding activity followed by Bax expression at the protein level. Further experiments using p53-null MDAH041 cell as well as low and high p53-expressing TR9-7 cell, in which p53 expression is under tight control of tetracycline, established that curcumin induced apoptosis in tumor cells via a p53-dependent pathway in which Bax is the downstream effector of p53. This property of curcumin suggests that this molecule could have a possible therapeutic potential in breast cancer patients.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.