Abstract Title:

Differential regulation of p53, c-Myc, Bcl-2 and Bax protein expression during apoptosis induced by widely divergent stimuli in human hepatoblastoma cells.

Abstract Source:

Oncogene. 1996 Aug 1;13(3):609-16. PMID: 8760302

Abstract Author(s):

M C Jiang, H F Yang-Yen, J K Lin, J J Yen

Article Affiliation:

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China.

Abstract:

Apoptosis of HepG2 cells triggered by various agents is characterized in an attempt to delineate the common apoptosis signaling pathway in human hepatoma cells. Several hallmarks of apoptosis, including DNA laddering, chromatin condensation and fragmentation, and an apoptosis specific cleavage of 28S and 18S ribosomal RNA were observed after treatment with curcumin. Curcumin treatment however did not alter the expression levels of Bcl-2 and Bax proteins. p53 protein accumulated slowly and decreased abruptly after reaching the maximum. Conversely, c-Myc protein decreased initially and subsequently increased preceding the onset of apoptosis. The accumulation of p53 protein is not due to increased levels of p53 mRNA and does not result in growth arrest. Staurosporine, quinacrine, ultraviolet irradiation, hydrogen peroxide, and cyclohexamide are all capable of triggering apoptosis in HepG2 cells. While most of these agents affect the expression levels of p53 and c-Myc similarly, none of them altered the expression levels of the Bcl-2 and Bax proteins. In conclusion, these data suggest that p53 and c-Myc may play a more important role in the apoptosis signaling pathway in HepG2 cells, than the bcl-2 gene family.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.