Abstract Title:

Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats.

Abstract Source:

Hepatology. 2010 May;51(5):1555-66. PMID: 20222050

Abstract Author(s):

Jian-Mei Li, Yu-Cheng Li, Ling-Dong Kong, Qing-Hua Hu

Article Affiliation:

From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.

Abstract:

High consumption of dietary fructose is an important contributory factor in the development of hepatic steatosis in insulin or leptin resistance. We investigated the effects of curcumin on fructose-induced hypertriglyceridemia and liver steatosis and explored its preventive mechanisms in rats. Curcumin reduced serum insulin and leptin levels in fructose-fed rats. This compound could increase phosphorylation of insulin receptor and insulin receptor substrate 1 to enhance Akt and extracellular signal-regulated kinase1/2 (ERK1/2) activation in the liver of fructose-fed rats. Moreover, curcumin increased phosphorylation of hepatic janus-activated kinase-signal transducer 2 and subsequently also stimulated Akt and ERK1/2 activation in this model. Suppression of curcumin on leptin signaling overstimulation in tyrosine1138 phosphorylation of the long form of leptin receptor and signal transducer and activator of transcription 3 resulted in down-regulation of suppressor of cytokine signaling 3 in the liver of fructose-fed rats. Thus, improvement of insulin and leptin signaling transduction and subsequently elevation of peroxisome proliferator-activated receptor alpha expression by curcumin led to reduction of very-low-density lipoprotein overproduction and triglyceride hypersynthesis. Furthermore, overexpression and hyperactivity of hepatic protein tyrosine phosphatase 1B (PTP1B) associated with defective insulin and leptin signaling were observed in fructose-fed rats. Additionally, curcumin was found to significantly reduce hepatic PTP1B expression and activity in this model. CONCLUSION: Our data indicate that the mechanisms by which curcumin protects against fructose-induced hypertriglyceridemia and hepatic steatosis are its inhibition on PTP1B and subsequently improvement of insulin and leptin sensitivity in the liver of rats. This PTP1B inhibitory property may be a promising therapeutic strategy for curcumin to treat fructose-induced hepatic steatosis driven by hepatic insulin and leptin resistance.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.