Abstract Title:

Reversal of P-glycoprotein-mediated multidrug resistance in human sarcoma MES-SA/Dx-5 cells by nonsteroidal anti-inflammatory drugs.

Abstract Source:

Oncol Rep. 2008 Oct;20(4):731-5. PMID: 18813811

Abstract Author(s):

Antonio Angelini, Manuela Iezzi, Concetta Di Febbo, Carmine Di Ilio, Franco Cuccurullo, Ettore Porreca

Article Affiliation:

Università Gabriele D'Annunzio, Facoltà di Medicina e Chirurgia, Centro di Scienze dell'Invecchiamento (Ce.S.I.), Campus Universitario, Chieti Scalo, Italy. [email protected]

Abstract:

Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is one of the major reasons for the failure of cancer therapy. Several chemosensitizers are able to reverse in vitro MDR by inhibiting P-gp, although high toxicity limits their clinical application. In this study, we aimed to investigate the in vitro effectiveness of four common non-steroidal anti-inflammatory drugs (NSAIDs) such as Curcumin (Cur), Sulindac (Sul), Ibuprofen (Ibu) and NS-398 (NS) to inhibit P-gp activity at clinically achievable doses and to evaluate their potential use as sensitizers in anti-cancer chemotherapy. The human doxorubicin (doxo) resistant uterine sarcoma cells (MES-SA/Dx-5) expressing high levels of P-gp, were treated with different doxo concentrations in the presence or absence of NSAIDs. Cellular accumulation of doxo, cytotoxicity and apoptosis induction were measured in comparison with Verapamil, a specific P-gp inhibitor, used as a reference molecule. We found that Ibu, Cur and NS-398 enhanced significantly doxo retention, cytotoxicity and apoptosis on resistant MES-SA/Doxo-5 cells when compared with doxo alone. In contrast, no significant changes were found in resistant cells treated with Sul-doxo combinations. Our results demonstrate that Ibu, Cur and NS-398 below their therapeutic plasma concentrations were able to overcome P-gp-mediated MDR in MES-SA/Dx-5 cells. These findings provide the rationale for clinical studies of NSAIDs and/or derivatives as a new potential generation of chemosensitizers to improve effectiveness of the anti-cancer drugs in the treatment of human cancer.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.