Abstract Title:

Curcumin supplementation improves mitochondrial and behavioral deficits in experimental model of chronic epilepsy.

Abstract Source:

Pharmacol Biochem Behav. 2014 Oct ;125:55-64. Epub 2014 Aug 10. PMID: 25117510

Abstract Author(s):

Harpreet Kaur, Amanjit Bal, Rajat Sandhir

Article Affiliation:

Harpreet Kaur


The present study was aimed to investigate the potential beneficial effect of curcumin, a polyphenol with pleiotropic properties, on mitochondrial dysfunctions, oxidative stress and cognitive deficits in a kindled model of epilepsy. Kindled epilepsy was induced in rats by administering a sub-convulsive dose of pentylenetetrazole (PTZ, 40 mg/kg body weight) every alternate day for 30 days. PTZ administered rats exhibited marked cognitive deficits assessed using active and passive avoidance tasks. This was accompanied by a significant decrease in NADH:cytochrome-c reductase (complex I) and cytochrome-c oxidase (complex IV) activities along with an increase in ROS, lipid peroxidation and protein carbonyls. The levels of glutathione also decreased in the cortex and hippocampus. Electron micrographs revealed disruption of mitochondrial membrane integrity with distorted cristae in PTZ treated animals. Histopathological examination showed pyknotic nuclei and cell loss in the hippocampus as well as in the cortex of PTZ treated animals. Curcumin administration at a dose of 100 mg/kg, p.o. throughout the treatment paradigm was able to ameliorate cognitive deficits with no significant effect on seizure score. Curcumin was able to restore the activity of mitochondrial complexes. In addition, significant reduction in ROS generation, lipid peroxidation and protein carbonyls was observed in PTZ animals supplemented with curcumin. Moreover, glutathione levels were also restored in PTZ treated rats supplemented with curcumin. Curcumin protected mitochondria from seizure induced structural alterations. Further, the curcumin supplemented PTZ rats had normal cell morphology and reduced cell loss. These results suggest that curcumin supplementation has potential to prevent mitochondrial dysfunctions and oxidative stress with improved cognitive functions in a chronic model of epilepsy.

Study Type : Insect Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.