n/a
Abstract Title:

Curcumol inhibits the expression of programmed cell death-ligand 1 through crosstalk between hypoxia-inducible factor-1α and STAT3 (T705) signaling pathways in hepatic cancer.

Abstract Source:

J Ethnopharmacol. 2020 Apr 9 ;257:112835. Epub 2020 Apr 9. PMID: 32278762

Abstract Author(s):

Hong Xiang Zuo, Yong Jin, Zhe Wang, Ming Yue Li, Zhi Hong Zhang, Jing Ying Wang, Yue Xing, Myong Hak Ri, Cheng Hua Jin, Guang Hua Xu, Lian Xun Piao, Juan Ma, Xuejun Jin

Article Affiliation:

Hong Xiang Zuo

Abstract:

ETHNOPHARMACOLOGICAL RELEVANCE: Curcuma wenyujin is a Chinese traditional herbal medicine that is commonly used as an anti-oxidant, anti-proliferative, and anti-tumorigenic agent. Curcumol is a representative index component for the quality control of the essential oil of Curcuma wenyujin, which is currently used as an anti-cancer drug, and is included in the State Pharmacopoeia Commission of the People's Republic of China (2005). However, the mechanisms of action and molecular functions of curcumol are not yet fully elucidated.

AIM OF THE STUDY: This study aimed to identify new effects of curcumol from the perspective of cancer immunotherapy.

MATERIALS AND METHODS: The underlying mechanism of the inhibition of programmed cell death-ligand 1 (PD-L1) activation by curcumol was investigated in vitro via homology modeling, molecular docking experiments, luciferase reporter assays, MTT assays, RT-PCR, western blotting, and immunofluorescence assays. Changes in cellular proliferation, angiogenesis, and the tumor-killing activity of T-cells were analyzed via EdU labeling, colony formation, flow cytometry, wound-healing, Matrigel Transwell invasion, tube formation, and T-cell killing. The anti-tumor activity of curcumol was assessed in vivo in a murine xenograft model using Hep3B cells.

RESULTS: Curcumol reduced the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) via JAK1, JAK2, and Src pathways and inhibited hypoxia-inducible factor-1α (HIF-1α) protein synthesis via mTOR/p70S6K/eIF4E and MAPK pathways. Furthermore, we revealed crosstalk between STAT3 and HIF-1α pathways, which collaboratively regulated PD-L1 activation, and that curcumol played a role in this regulation. Curcumol inhibited cell proliferation, S-phase progression, tube formation, invasion, and metastasis by inhibiting PD-L1. In addition, curcumol restored the activity of cytotoxic T-cells and their capacity for tumor cell killing by inhibiting PD-L1. In vivo experiments confirmed that curcumol inhibited tumor growth in a xenograft model.

CONCLUSIONS: These results illustrated that curcumol inhibits the expression of PD-L1 through crosstalk between HIF-1α and p-STAT3 (T705) signaling pathways in hepatic cancer. Thus, curcumol might represent a promising lead compound for the development of new targeted anti-cancer therapeutics.

Study Type : Animal Study, In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.