n/a
Abstract Title:

Delivery of Apoptosis-inducing Piperine to Triple-negative Breast Cancer CellsCo-polymeric Nanoparticles.

Abstract Source:

Anticancer Res. 2020 Feb ;40(2):689-694. PMID: 32014909

Abstract Author(s):

Javad Ghassemi Rad, David W Hoskin

Article Affiliation:

Javad Ghassemi Rad

Abstract:

BACKGROUND/AIM: Piperine, a major alkaloid of the fruit of black pepper plants, selectively inhibits the growth of triple-negative breast cancer cells but its lipophilicity restricts possible clinical application. This study therefore determined the feasibility of encapsulating piperine in nanoparticles (NPs) to increase its solubility in an aqueous environment.

MATERIALS AND METHODS: Piperine-loaded biodegradable methoxy poly(ethylene glycol)-poly(lactic-co-glycolic) acid copolymer-based NPs were produced by single emulsion solvent extraction and thin-film hydration. Growth and viability of triple-negative breast cancer (TNBC) cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Annexin-V-FLUOS/propidium iodide staining, respectively.

RESULTS: Thin-film hydration was superior to single emulsion solvent extraction, yielding piperine-loaded NPs with an average size of 50 nm. Piperine-loaded NPs inhibited TNBC cell growth and induced apoptosis while sparing normal fibroblasts.

CONCLUSION: It is feasible to deliver a cytotoxic concentration of piperine to TNBC cells via NPs with the potential for improved bioavailability and solubility in biological fluids.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.