Abstract Title:

Demethoxycurcumin induces the apoptosis of human lung cancer NCI-H460 cells through the mitochondrial-dependent pathway.

Abstract Source:

Oncol Rep. 2015 May ;33(5):2429-37. Epub 2015 Mar 18. PMID: 25813094

Abstract Author(s):

Yang-Ching Ko, Jin-Cherng Lien, Hsin-Chung Liu, Shu-Chun Hsu, Bin-Chuan Ji, Mei-Due Yang, Wu-Huei Hsu, Jing-Gung Chung

Article Affiliation:

Yang-Ching Ko

Abstract:

Lung cancer is the most common cause of cancer-related mortality in the US as well as other regions of the world. Curcumin, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) are the major components of Curcuma longa L. It has been reported that curcumin inhibits the growth of various types of cancer cells in vitro and in vivo. However, the mechanisms involved in the inhibition of cell growth and induced apoptosis by DMC in human lung cancer cells remain unclear. In the present study, we investigated the effect of DMC on cell death via the induction of apoptosis in NCI-H460 human lung cancer cells. Flow cytometric assay was used to examine the total percentage of viable cells, the population of cells in the sub-G1 phase of the cell cycle, the level of reactive oxygen species (ROS), Ca²⁺ production, mitochondrial membrane potential (ΔΨm) and caspase activity. Western blotting was used to examine the changes in the expression of cell cycle- and apoptosis-associated proteins. Confocal microscopy was used to examine the translocation of apoptosis-associated proteins. The results indicated that DMC significantly induced cell morphological changes and decreased the percentage of viable NCI-H460 cells and DMC induced apoptosis based on the cell distribution in the sub-G1 phase. Moreover, DMC promoted ROS and Ca²⁺ production and decreased the level of ΔΨm and promoted the activities of caspase-3, -8 and -9. The Western blotting results showed that DMC promoted the expression of AIF, Endo G and PARP. The levels of Fas ligand (Fas L) and Fas were also upregulated. Furthermore, DMC promoted expression of ER stress-associated proteins such as GRP78, GADD153, IRE1β, ATF-6α, ATF-6β and caspase-4. Based on the findings, we suggest that DMC may be used as a novel anticancer agent for the treatment of lung cancer in the future.

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.