n/a
Abstract Title:

An in-depth view of potential dual effect of thymol in inhibiting xanthine oxidase activity: Electrochemical measurements in combination with four way PARAFAC analysis and molecular docking insights.

Abstract Source:

Int J Biol Macromol. 2018 Aug 7. Epub 2018 Aug 7. PMID: 30096398

Abstract Author(s):

Saleheh Abbasi, Sajjad Gharaghani, Ali Benvidi, Masoud Rezaeinasab, Ali Akbar Saboury

Article Affiliation:

Saleheh Abbasi

Abstract:

Xanthine oxidase (XO) can catalyze xanthine to uric acid and has also been linked with the extension of some serious diseases such as cancer, gout, diabetes and so on. Thymol is a part of diet in the form of spices. Due to the high antioxidant activity, its inhibitory effect on XO was studied in the present work. XO organized in four redox domains which exhibiting electrochemical signals. Therefore, voltammetric methods can be used to obtain the valuable information about the action mechanism of thymol on XO. However, there are extreme complexities in these biological sample matrices which make the deeper understanding of inhibition mechanism of thymol on XO activity is difficult. Thus, development of electrochemical techniques coupled with the four-way parallel factor analysis (PARAFAC) has provided promising solutions for analyzing of complex matrix. To better explore this inhibitory effect, electrochemical technologies has been used as a complement with ultraviolet and visible (UV-Vis) spectroscopy and molecular docking studies. For the first time, molecular docking studies were used to gain a fundamental understanding to explain how the electron transfer coupling occurs at XO active sites in the presence of thymol. It is in good agreement with the experimental data. These studies reveal that thymol could enter into the catalytic centers of XO. Also, it inhibits the XO activity through the direct binding to flavin adenine dinucleotides (FAD) center. The results display dose-dependent inhibition of XO with thymol. Its inhibitory activity was linked to its antioxidant properties to reduce the formation of free radicals (FRs) and related diseases.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.