Abstract Title:

Dietaryβ-Cryptoxanthin Inhibits High-Refined Carbohydrate Diet-Induced Fatty Liver via Differential Protective Mechanisms Depending on Carotenoid Cleavage Enzymes in Male Mice.

Abstract Source:

J Nutr. 2019 Jun 18. Epub 2019 Jun 18. PMID: 31212314

Abstract Author(s):

Ji Ye Lim, Chun Liu, Kang-Quan Hu, Donald E Smith, Dayong Wu, Stefania Lamon-Fava, Lynne M Ausman, Xiang-Dong Wang

Article Affiliation:

Ji Ye Lim


BACKGROUND: β-Cryptoxanthin (BCX), a provitamin A carotenoid shown to protect against nonalcoholic fatty liver disease (NAFLD), can be cleaved by β-carotene-15,15'-oxygenase (BCO1) to generate vitamin A, and by β-carotene-9',10'-oxygenase (BCO2) to produce bioactive apo-carotenoids. BCO1/BCO2 polymorphisms have been associated with variations in plasma carotenoid amounts in both humans and animals.

OBJECTIVES: We investigated whether BCX feeding inhibits high refined-carbohydrate diet (HRCD)-induced NAFLD, dependent or independent of BCO1/BCO2.

METHODS: Six-week-old male wild-type (WT) and BCO1-/-/BCO2-/- double knockout (DKO) mice were randomly fed HRCD (66.5% of energy from carbohydrate) with or without BCX (10 mg/kg diet) for 24 wk. Pathological and biochemical variables were analyzed in the liver and mesenteric adipose tissues (MATs). Data were analyzed by 2-factor ANOVA.

RESULTS: Compared to their respective HRCD controls, BCX reduced hepatic steatosis severity by 33‒43% and hepatic total cholesterol by 43‒70% in both WT and DKO mice (P < 0.01). Hepatic concentrations of BCX, but not retinol and retinyl palmitate, were 33-fold higher in DKO mice than in WT mice (P < 0.001). BCX feeding increased the hepatic fatty acid oxidation protein peroxisome proliferator-activated receptor-α, and the cholesterol efflux gene ATP-binding cassette transporter5, and suppressed the lipogenesis gene acetyl-CoA carboxylase 1 (Acc1) in the MAT of WT mice but not DKO mice (P < 0.05). BCX feeding decreased the hepatic lipogenesis proteins ACC and stearoyl-CoA desaturase-1 (3-fold and 5-fold) and the cholesterol synthesis genes 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase and HMG-CoA synthase 1 (2.7-fold and 1.8-fold) and increased the cholesterol catabolism gene cholesterol 7α-hydroxylase (1.9-fold) in the DKO but not WT mice (P < 0.05). BCX feeding increased hepatic protein sirtuin1 (2.5-fold) and AMP-activated protein kinase (9-fold) and decreased hepatic farnesoid X receptor protein (80%) and the inflammatory cytokine gene Il6 (6-fold) in the MAT of DKO mice but not WT mice (P < 0.05).

CONCLUSION: BCX feeding mitigates HRCD-induced NAFLD in both WT and DKO mice through different mechanisms in the liver-MAT axis, depending on the presence or absence of BCO1/BCO2.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.