Abstract Title:

Dietary olive oil effect on antioxidant status and fatty acid profile in the erythrocyte of 2,4-D- exposed rats.

Abstract Source:

Lipids Health Dis. 2010 ;9:89. Epub 2010 Aug 25. PMID: 20738870

Abstract Author(s):

Amel Nakbi, Wafa Tayeb, Samia Dabbou, Manel Issaoui, Abir K Grissa, Nabil Attia, Mohamed Hammami

Article Affiliation:

Biochemistry Laboratory, UR03/ES08 Human Nutrition&Metabolic Disorders, USCR Mass Spectrometry, Faculty of Medicine of Monastir, Tunisia. nakbia@yahoo.fr


BACKGROUND: Oxidative stress produced by reactive oxygen species (ROS) has been linked to the development of several diseases such as cardiovascular, cancer, and neurodegenerative diseases. This study investigates the possible protective effect of extra virgin olive oil (EVOO), lipophilic fraction (OOLF) and hydrophilic fraction (OOHF) on oxidative stress and fatty acid profile of erythrocytes in 2,4-D treated rats.

METHODS: Male Wistar rats were divided randomly into eight groups: control (C), (2,4-D) at a dose of 5 mg/kg b.w., (2,4-D/EVOO) was given 2,4-D plus EVOO, (2,4-D/OOHF) that received 2,4-D plus hydrophilic fraction, (2,4-D/OOLF) treated with 2,4-D plus lipophilic fraction, (EVOO) that received only EVOO, (OOHF) was given hydrophilic fraction and (OOLF) treated with lipophilic fraction. These components were daily administered by gavages for 4 weeks.

RESULTS: 2,4-D treatment lead to decrease of antioxidant enzyme activities, namely, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) associated with a higher amount of MDA level. Erythrocyte membranes' fatty acid composition was also significantly modified with 2,4-D exposure. EVOO and hydrophilic fraction supplemented to rats with or not 2,4-D treatment enhanced the antioxidant enzyme activities and reduced the MDA level. However, lipophilic fraction did not show any improvement in oxidative damage induced by 2,4-D in spite its richness in MUFA and vitamins.

CONCLUSION: EVOO administered to 2,4-D-treated rats protected erythrocyte membranes against oxidative damage by means of preventing excessive lipid peroxidation to increase the MUFA composition and increase maintaining antioxidants enzymes at normal concentrations.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.