n/a
Abstract Title:

TheΩ-3 fatty acid docosahexaenoic acid selectively induces apoptosis in tumor-derived cells and suppress tumor growth in gastric cancer.

Abstract Source:

Eur J Pharmacol. 2021 Jan 25:173910. Epub 2021 Jan 25. PMID: 33508285

Abstract Author(s):

Lorena Ortega, Lorena Lobos-González, Mauricio Reyna-Jeldes, Daniela Cerda, Erwin De la Fuente-Ortega, Patricio Castro, Giuliano Bernal, Claudio Coddou

Article Affiliation:

Lorena Ortega

Abstract:

Despite current achievements and innovations in cancer treatment, conventional chemotherapy has several limitations, such as unsatisfactory long-term survival, cancer drug resistance and toxicity against non-tumoral cells. In the search for safer therapeutic alternatives, docosahexaenoic acid (DHA) has shown promising effects inhibiting tumor growth without significant side effects in several types of cancer, but in gastric cancer (GC) its effects have not been completely described. In this study, we characterized the effects of DHA in GC using in vivo and in vitro models. Among all of the evaluatedΩ-3 and Ω-6 fatty acids, DHA showed the highest antiproliferative potency and selectivity against the GC-derived cell line AGS. 10-100 μM DHA decreased AGS cell viability in a concentration-dependent manner but had no effect on non-tumoral GES-1 cells. To evaluate if the effects of DHA were due to apoptosis induction, cells were stained with Annexin V-PI, observing that 75 and 100 μM DHA increased apoptosis in AGS, but not in GES-1 cells. Additionally, levels of several proapoptotic and antiapoptotic regulators were assessed by qPCR, western blot and activity assays, showing similar results. In order to evaluate DHA efficacy in vivo, xenografts in an immunodeficient mouse model (BALB/cNOD-SCID) were used. In these experiments, DHA treatment for six weeks consistently reduced subcutaneous tumor size, ascitic fluid volume and liver metastasis. In summary, we found that DHA has a selective antiproliferative effect on GC, being this effect driven by apoptosis induction. Our investigation provides promising features for DHA as potential therapeutic agent in GC.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.