n/a
Article Publish Status: FREE
Abstract Title:

Effect of Carnosine orβ-Alanine Supplementation on Markers of Glycemic Control and Insulin Resistance in Humans and Animals: A Systematic Review and Meta-analysis.

Abstract Source:

Adv Nutr. 2021 Jul 31. Epub 2021 Jul 31. PMID: 34333586

Abstract Author(s):

Joseph J Matthews, Eimear Dolan, Paul A Swinton, Lívia Santos, Guilherme G Artioli, Mark D Turner, Kirsty J Elliott-Sale, Craig Sale

Article Affiliation:

Joseph J Matthews

Abstract:

There is growing evidence that supplementation with carnosine, or its rate-limiting precursorβ-alanine, can ameliorate aspects of metabolic dysregulation that occur in diabetes and its related conditions. The purpose of this systematic review and meta-analysis was to evaluate the effect of carnosine or β-alanine supplementation on markers of glycemic control and insulin resistance in humans and animals. We performed a systematic search of 6 electronic databases up to 31 December 2020. Primary outcomes were changes in 1) fasting glucose, 2) glycated hemoglobin (HbA1c), and 3) 2-h glucose following a glucose-tolerance test. A set of additional outcomes included fasting insulin and homeostatic model assessment of β-cell function (HOMA-β) and insulin resistance (HOMA-IR). We assessed risk of bias using the Cochrane risk of bias (RoB) 2.0 (human studies) and the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) RoB (animal studies) tools; and used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to assess certainty. We used Bayesian hierarchical random-effects models, with informative priors for human data and noninformative priors for animal data. Inferences were made on posterior samples generated by HamiltonianMarkov Chain Monte Carlo using 90% credible intervals (90% CrI) and calculated probabilities. Twenty studies (n = 4 human, n = 16 rodent) were included, providing data for 2 primary outcomes (fasting glucose and HbA1c) and 3 additional outcomes (fasting insulin, HOMA-β, and HOMA-IR). The modelprovides evidence that supplementation decreases fasting glucose [humans: mean difference (MD)0.5 = -0.95 mmol · L-1 (90% CrI: -2.1, 0.08); rodent: MD0.5 = -2.26 mmol · L-1 (90% CrI: -4.03, -0.44)], HbA1c [humans: MD0.5 = -0.91% (90% CrI: -1.46, -0.39); rodents: MD0.5 = -1.05% (90% CrI: -1.64,-0.52)], HOMA-IR [humans: standardized mean difference (SMD)0.5 = -0.41 (90% CrI: -0.82, -0.07); rodents: SMD0.5 = -0.63 (90% CrI: -1.98, 0.65)], and fasting insulin [humans: SMD0.5 = -0.41 (90% CrI: -0.77, -0.07)]. GRADE assessment showed our certainty in the effect estimate of each outcome to be moderate (human outcomes) or very low (rodent outcomes). Supplementation with carnosine or β-alanine may reduce fasting glucose, HbA1c, and HOMA-IR in humans and rodents, and fasting insulin in humans; both compounds show potential as therapeutics to improve glycemic control and insulin resistance.This review was registered at PROSPERO as CRD42020191588.

Study Type : Meta Analysis, Review

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.