Article Publish Status: FREE
Abstract Title:

Effects of short-term, sublethal fipronil and its metabolite on dragonfly feeding activity.

Abstract Source:

PLoS One. 2018 ;13(7):e0200299. Epub 2018 Jul 11. PMID: 29995904

Abstract Author(s):

Hiroshi Jinguji, Kazuhisa Ohtsu, Tetsuyuki Ueda, Koichi Goka

Article Affiliation:

Hiroshi Jinguji


Dragonflies, Sympetrum spp., are indispensable to agriculture and are a central element of culture in Japan. However, S. frequens populations in rice paddy fields have declined in recent decades. Dragonfly larvae are predatory aquatic insects that feed on other organisms found in habitats with slow-moving or standing water. The increasing use of fipronil and neonicotinoid insecticides in agriculture is also increasing exposure to Sympetrum spp. in larval stages through paddy soil and water. The role of fipronil insecticides in the decline of dragonflies is of concern, and we here examine the sublethal effects of this insecticide on the feeding behaviors of two Sympetrum spp. Based on the quantity of prey items consumed and the time to capture prey items, feeding inhibition was determined to be a potential mechanism of the decline of Sympetrum spp. following 48-h exposure to fipronil and fipronil sulfone. Prey consumption by S. infuscatum was significantly reduced for fipronil sulfone at all concentrations (0.01-1000μg/L). S. frequens exposed to 1, 10, 100 and 1000 μg/L fipronil sulfone had significantly longer prey capture times. Fipronil sulfone was 2.8, 9.7 and 10.5 times more toxic to S. infuscatum than fipronil in terms of acute toxicity, feeding inhibition and delayed toxicity, respectively. In addition, fipronil sulfone was 6.6, 2.9 and 9.1 times more toxic, respectively, to S. frequens than fipronil. Our findings suggest that sublethal effects on feeding inhibition lead to severe mortality at realistic paddy soil and water concentrations. Our results provide the first demonstration that short-term exposure to fipronil and fipronil sulfone can consequently cause significant harm to dragonfly larvae survival due to feeding inhibition. These findings have implications for current pesticide risk assessment and dragonfly protection.

Study Type : Insect Study
Additional Links
Problem Substances : Pesticides : CK(827) : AC(95)

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.