Abstract Title:

Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate.

Abstract Source:

Carcinogenesis. 2004 Sep;25(9):1567-74. Epub 2004 Apr 16. PMID: 15090467

Abstract Author(s):

Hiroshi Nakagawa, Keiji Hasumi, Je-Tae Woo, Kazuo Nagai, Masaaki Wachi

Abstract:

Although (-)-epigallocatechin gallate (EGCG) has been reported to induce apoptosis in a variety of tumor cells, detailed mechanisms remain to be explored. In the present study, we investigated the antitumor mechanism of EGCG by using human T-cell acute lymphoblastic leukemia Jurkat cells. We focused on the involvement of reactive oxygen species, as we found previously that EGCG caused apoptotic cell death in osteoclastic cells due mainly to promotion of the reduction of Fe(III) to Fe(II) to trigger Fenton reaction, which affords hydroxyl radical from hydrogen peroxide [H(2)O(2) + Fe(II) --> (*)OH + OH(-) + Fe(III)]. EGCG (12.5-50 micro M) decreased the viability of Jurkat cells and caused concomitant increase in cellular caspase-3 activity. Catalase and the Fe(II)-chelating reagent o-phenanthroline suppressed the EGCG effects, indicating involvements of both H(2)O(2) and Fe(II) in the mechanism. Unexpectedly, epicatechin gallate (ECG), which has Fe(III)-reducing potency comparable with EGCG, failed to decrease the viability of Jurkat cells, while epigallocatechin (EGC), which has low capacity to reduce Fe(III), showed cytotoxic effects similar to EGCG. These results suggest that, unlike in osteoclastic cells, a mechanism other than Fe(III) reduction plays a role in catechin-mediated Jurkat cell death. We found that EGCG causes an elevation of H(2)O(2) levels in Jurkat cell culture, in cell-free culture medium and sodium phosphate buffer. Catechins with a higher ability to produce H(2)O(2) were more cytotoxic to Jurkat cells. Hydrogen peroxide itself exerted Fe(II)-dependent cytotoxicity. Amongst tumor and normal cell lines tested, cells exhibiting lower H(2)O(2)-eliminating activity were more sensitive to EGCG. From these findings, we propose the mechanism that make catechins cytotoxic in certain tumor cells is due to their ability to produce H(2)O(2) and that the resulting increase in H(2)O(2) levels triggers Fe(II)-dependent formation of highly toxic hydroxyl radical, which in turn induces apoptotic cell death.

Study Type : In Vitro Study

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.