n/a
Abstract Title:

EGCG sensitizes chemotherapeutic-induced cytotoxicity by targeting the ERK pathway in multiple cancer cell lines.

Abstract Source:

Arch Biochem Biophys. 2020 10 15 ;692:108546. Epub 2020 Aug 18. PMID: 32818507

Abstract Author(s):

Ran Wei, Joanna Wirkus, Zixuan Yang, Jazmin Machuca, Yasmin Esparza, Gerardo G Mackenzie

Article Affiliation:

Ran Wei

Abstract:

Epigallocatechin-3-gallate (EGCG), a major polyphenol component of green tea, presents anticancer efficacy. However, its exact mechanism of action is not known. In this study, we evaluated the effect of EGCG alone or in combination with current chemotherapeutics [gemcitabine, 5-flourouracil (5-FU), and doxorubicin] on pancreatic, colon, and lung cancer cell growth, as well as the mechanisms involved in the combined action. EGCG reduced pancreatic, colon, and lung cancer cell growth in a concentration and time-dependent manner. EGCG strongly induced apoptosis and blocked cell cycle progression. Moreover, EGCG enhanced the growth inhibitory effect of 5-FU and doxorubicin. Of note, EGCG enhanced 5-FU's and doxorubicin's effect on apoptosis, but not on cell cycle. Mechanistically, EGCG reduced ERK phosphorylation concentration-dependently, and sensitized gemcitabine, 5-FU, and doxorubicin to further suppress ERK phosphorylation in multiple cancer cell lines. In conclusion, EGCG presents a strong anticancer effect in pancreatic, colon, and lung cancer cells and is a robust combination partner for multiple chemotherapeutics as evidenced by reducing cancer cell growth, in part, by inhibiting the ERK pathway.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.