Article Publish Status: FREE
Abstract Title:

Ellagic Acid Reduces High Glucose-Induced Vascular Oxidative Stress Through ERK1/2/NOX4 Signaling Pathway.

Abstract Source:

Cell Physiol Biochem. 2017 Nov 28 ;44(3):1174-1187. Epub 2017 Nov 28. PMID: 29179217

Abstract Author(s):

Artur Rozentsvit, Kevin Vinokur, Sherin Samuel, Ying Li, A Martin Gerdes, Maria Alicia Carrillo-Sepulveda

Article Affiliation:

Artur Rozentsvit


BACKGROUND/AIMS: Elevated production of reactive oxygen species (ROS) is linked to endothelial dysfunction and is one of the key contributors to the pathogenesis of diabetic vascular complications. Emerging evidence has indicated that ellagic acid (EA), a polyphenol found in fruits and nuts, possesses numerous biological activities including radical scavenging. However, whether EA exerts a vasculo-protective effect via antioxidant mechanisms in blood vessels exposed to diabetic conditions remains unknown. Accordingly, the goal of this current study was to determine whether EA decreases vascular ROS production and thus ameliorates endothelial dysfunction in the diabetic milieu.

METHODS: Intact rat aortas and human aortic endothelial cells (HAEC) were stimulated with 30mM high glucose (HG) with and without EA co-treatment. Endothelium-dependent vasodilation was measured using a wire myograph. Gene and protein expression of non-phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 4 (NOX4) were detected using RT-PCR and western blotting, respectively. Oxidative stress was determined by measuring ROS levels using dihydroethidium (DHE) staining.

RESULTS: Intact aortas exposed to HG condition displayed exacerbated ROS production and impairment of endothelium-dependent vasodilation, characterizing endothelial dysfunction. These effects were markedly reduced with EA treatment. HG enhanced ROS production in HAEC, paralleled by increased ERK1/2 activation and NOX4 expression. EA treatment blunted the increase of ROS generation, ERK1/2 activation and decreased NOX4.

CONCLUSIONS: EA significantly decreases endothelial ROS levels and ameliorates the impairment of vascular relaxation induced by HG. Our results suggest that EA exerts a vasculo-protective effect under diabetic conditions via an antioxidant effect that involves inhibition of ERK1/2 and downregulation of NOX4.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.