Abstract Title:

Epigallocatechin gallate exerts protective effects against myocardial ischemia/reperfusion injury through the PI3K/Akt pathway-mediated inhibition of apoptosis and the restoration of the autophagic flux.

Abstract Source:

Int J Mol Med. 2016 Jul ;38(1):328-36. Epub 2016 May 31. PMID: 27246989

Abstract Author(s):

Feifei Xuan, Jie Jian

Article Affiliation:

Feifei Xuan


Epigallocatechin gallate (EGCG), a polyphenol derived from green tea, exhibits a wide range of biological activities, including antioxidant, atherosclerosis and antitumor activities. In this study, the cardioprotective effects of EGCG on myocardial ischemia/reperfusion (I/R) injury in rats and the underlying mechanisms were investigated. A rat model of I/R injury was established by ligating the left anterior descending coronary artery for 30 min, followed by reperfusion for 2 h. The levels of I/R-induced creatine kinase-MB (CK-MB) and the release of lactatedehydrogenase (LDH), as well as the infarct size, cardiomyocyte apoptosis and cardiac functional impairment were examined and compared. Western blot analysis was carried out to elucidate the potential molecular mechanisms of action of EGCG. The results revealed that EGCG post-conditioning significantly decreased the levels of CK-MB and the release of LDH, reduced the myocardial infarct size, decreased the apoptotic rate and partially preserved heart function. Furthermore, EGCG decreased the expression of cleaved caspase-3 concomitantly with the upregulation of PI3K, and the phosphorylation of Akt and endothelial nitric oxide synthase (eNOS). It also inhibited I/R-induced overautophagy and promoted the clearance of autophagosomes, as evidenced by a decrease in the ratio of microtubule-associated protein 1 light chain 3 (LC3)-II/LC3-I, the downregulation of Beclin1, Atg5 and p62, andthe upregulation of active cathepsin D. Additionally, we observed an increase in the phosphorylation levels of the mammalian target of rapamycin (mTOR) following treatment with EGCG. Taken together, the findings of this study demonstrate that, EGCG post-conditioning alleviates myocardial I/R injury by inhibiting apoptosis and restoring the autophagic flux, which is associated with several targets of the PI3K/Akt signaling pathway.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.