Article Publish Status: FREE
Abstract Title:

Ethanol extract fromleaves modulates brown adipose tissue and bone morphogenetic protein 7 in high-fat diet mice.

Abstract Source:

Vet World. 2021 May ;14(5):1234-1240. Epub 2021 May 21. PMID: 34220125

Abstract Author(s):

Mas Rizky A A Syamsunarno, Fenty Alia, Neni Anggraeni, Vanessa Ayu Sumirat, Suhendra Praptama, Nur Atik

Article Affiliation:

Mas Rizky A A Syamsunarno


Background and Aim: Brown adipose tissue's (BAT) ability to increase energy expenditure has become a new focus in obesity research. The amount and activity of BAT are inversely correlated with body-mass index and body fat percentage. Bone morphogenetic protein 7 (BMP7) plays a role in the differentiation and development of BAT, which can be increased by bioactive compounds from several medicinal plants.(MO) leaves are rich with vitamin, minerals, and bioactive compounds and have been used for treating obesity-related diseases in the past. The aim of this study was to explore the potency of MO leaf extract (MOLE) to modulate BAT differentiation in mice fed a high-fat diet (HFD).

Materials and Methods: Twenty-four, 5-week-old male Deutsche Denken Yoken mice () were randomly divided into four groups: The normal chow diet group was fed a normal diet, the HFD group was fed a HFD, the HFD+MOLE1, and the HFD+MOLE2 groups were fed HFD and MOLE in a dose of 280 and 560 mg/kg body weight (BW)/day, respectively. The experiment was performed for 7 weeks. At the end of the experiment, histological analysis was performed on the interscapular BAT, and blood was drawn for BMP7 protein levels.

Results: After 7 weeks, BAT weight in the HFD group was nearly twice in the weight of the HFD+MOLE1 group (125±13.78 mg vs. 75±13.78 mg; p<0.001). There was also a significant increase in BAT cell density in the HFD+MOLE1 group. BMP7 serum protein levels were significantly higher in the HFD+MOLE1 group compared to the HFD group.

Conclusions: The administration of MOLE in a dose of 280 mg/kg BW/day in HFD-mice induces BAT differentiation and proliferation by upregulating BMP7 protein levels.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.