Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Article Publish Status: FREE
Abstract Title:

Diesel exhaust exposure and nasal response to attenuated influenza in normal and allergic volunteers.

Abstract Source:

Am J Respir Crit Care Med. 2012 Jan 15 ;185(2):179-85. Epub 2011 Oct 27. PMID: 22071326

Abstract Author(s):

Terry L Noah, Haibo Zhou, Hongtao Zhang, Katie Horvath, Carole Robinette, Matthew Kesic, Megan Meyer, David Diaz-Sanchez, Ilona Jaspers

Article Affiliation:

Terry L Noah

Abstract:

RATIONALE: Diesel exhaust enhances allergic inflammation, and pollutants are associated with heightened susceptibility to viral respiratory infections. The effects of combined diesel and virus exposure in humans are unknown.

OBJECTIVES: Test whether acute exposure to diesel modifies inflammatory responses to influenza virus in normal humans and those with allergies.

METHODS: We conducted a double-blind, randomized, placebo-controlled study of nasal responses to live attenuated influenza virus in normal volunteers and those with allergic rhinitis exposed to diesel (100μg/m(3)) or clean air for 2 hours, followed by standard dose of virus and serial nasal lavages. Endpoints were inflammatory mediators (ELISA) and virus quantity (quantitative reverse-transcriptase polymerase chain reaction). To test for exposure effect, we used multiple regression with exposure group (diesel vs. air) as the main explanatory variable and allergic status as an additional factor.

MEASUREMENTS AND MAIN RESULTS: Baseline levels of mediators did not differ among groups. For most postvirus nasal cytokine responses, there was no significant diesel effect, and no significant interaction with allergy. However, diesel was associated with significantly increased IFN-γ responses (P = 0.02), with no interaction with allergy in the regression model. Eotaxin-1 (P = 0.01), eosinophil cationic protein (P<0.01), and influenza RNA sequences in nasal cells (P = 0.03) were significantly increased with diesel exposure, linked to allergy.

CONCLUSIONS: Short-term exposure to diesel exhaust leads to increased eosinophil activation and increased virus quantity after virus inoculation in those with allergic rhinitis. This is consistent with previous literature suggesting a diesel"adjuvant"effect promoting allergic inflammation, and our data further suggest this change may be associated with reduced virus clearance.Clinical trial registered with www.clinicaltrials.gov (NCT00617110).

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.