n/a
Abstract Title:

Fisetin-induced apoptosis of human oral cancer SCC-4 cells through reactive oxygen species production, endoplasmic reticulum stress, caspase-, and mitochondria-dependent signaling pathways.

Abstract Source:

Environ Toxicol. 2017 Feb 9. Epub 2017 Feb 9. PMID: 28181380

Abstract Author(s):

Chen-Hsuan Su, Chao-Lin Kuo, Kung-Wen Lu, Fu-Shun Yu, Yi-Shih Ma, Jiun-Long Yang, Yung-Lin Chu, Fu-Shin Chueh, Kuo-Ching Liu, Jing-Gung Chung

Article Affiliation:

Chen-Hsuan Su

Abstract:

Oral cancer is one of the cancer-related diseases in human populations and its incidence rates are rising worldwide. Fisetin, a flavonoid from natural products, has been shown to exhibit anticancer activities in many human cancer cell lines but the molecular mechanism of fisetin-induced apoptosis in human oral cancer cells is still unclear; thus, in this study, we investigated fisetin-induced cell death and associated signal pathways on human oral cancer SCC-4 cells in vitro. We examined cell morphological changes, total viable cells, and cell cycle distribution by phase contrast microscopy and flow cytometry assays. Reactive oxygen species (ROS), Ca(2+) , mitochondria membrane potential (ΔΨm ), and caspase-8, -9, and -3 activities were also measured by flow cytometer. Results indicate that fisetin induced cell death through the cell morphological changes, caused G2/M phase arrest, induction of apoptosis, promoted ROS and Ca(2+) production, and decreased the level of ΔΨm and increased caspase-3, -8, and -9 activities in SCC-4 cells. DAPI staining and DNA gel electrophoresis were also used to confirm fisetin-induced cell apoptosis in SCC-4 cells. Western blotting also found out that Fisetin increased the proapoptotic proteins such as Bax and Bid and decreased the antiapoptotic proteins such as Bcl-2. Furthermore, results also showed that Fisetin increased the cytochrome c, AIF, and Endo G release from mitochondria in SCC-4 cells. We also used ATF-6α, ATF-6β, GADD153, and GRP78 which indicated that fisetin induced cell death through ER stress. Based on those observations, we suggest that fisetin induced cell apoptosis through ER stress, mitochondria-, and caspase-dependent pathways.

Study Type : In Vitro Study
Additional Links
Pharmacological Actions : Apoptotic : CK(6986) : AC(6931)

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.