n/a
Article Publish Status: FREE
Abstract Title:

Gastrodin induces lysosomal biogenesis and autophagy to prevent the formation of foam cells via AMPK-FoxO1-TFEB signalling axis.

Abstract Source:

J Cell Mol Med. 2021 06 ;25(12):5769-5781. Epub 2021 May 10. PMID: 33973365

Abstract Author(s):

Jun Tao, Ping Yang, Liqiu Xie, Yuwei Pu, Jiazhi Guo, Jianlin Jiao, Lin Sun, Di Lu

Article Affiliation:

Jun Tao

Abstract:

Abnormal accumulation of lipids and massive deposition of foam cells is a primary event in the pathogenesis of atherosclerosis. Recent studies have demonstrated that autophagy and lysosomal function of atherosclerotic macrophages are impaired, which exacerbates the accumulation of lipid in macrophages and formation of foam cells. Gastrodin, a major active component of Gastrodia elata Bl., has exerted a protective effect on nervous system, but the effect of gastrodin on atherosclerotic vascular disease remains unknown. We aimed to evaluate the effect of gastrodin on autophagy and lysosomal function of foam cells and explored the mechanism underlying gastrodin's effect on the formation of foam cells. In an in vitro foam cell model constructed by incubating macrophages with oxygenized low-density lipoproteins (ox-LDL), our results showed that lysosomal function and autophagy of foam cells were compromised. Gastrodin restored lysosomal function and autophagic activity via the induction of lysosomal biogenesis and autophagy. The restoration of lysosomal function and autophagic activity enhanced cholesterol efflux from macrophages, therefore, reducing lipid accumulation and preventing formation of foam cells. AMP-activated protein kinase (AMPK) was activated by gastrodin to promote phosphorylation and nuclear translocation of forkhead box O1 (FoxO1), subsequently resulting in increased transcription factor EB (TFEB) expression. TFEB was activated by gastrodin to promote lysosomal biogenesis and autophagy. Our study revealed that the effect of gastrodin on foam cell formation and that induction of lysosomal biogenesis and autophagy of foam cells through AMPK-FoxO1-TFEB signalling axis may be a novel therapeutic target of atherosclerosis.

Study Type : In Vitro Study
Additional Links
Pharmacological Actions : Hypolipidemic : CK(5358) : AC(1880)

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.