n/a
Abstract Title:

Genistein and Galantamine Combinations Decreaseβ-Amyloid Peptide-Induced Genotoxicity and Cell Death in SH-SY5Y Cell Line: an In Vitro and In Silico Approach for Mimic of Alzheimer's Disease.

Abstract Source:

Neurotox Res. 2020 Jul 1. Epub 2020 Jul 1. PMID: 32613603

Abstract Author(s):

Willian Orlando Castillo, Nilza Velasco Palomino, Catarina Satie Takahashi, Silvana Giuliatti

Article Affiliation:

Willian Orlando Castillo

Abstract:

Alzheimer's disease (AD) is the primary dementia-causing disease worldwide, involving a multifactorial combination of environmental, genetic, and epigenetic factors, with essential participation of age and sex. Biochemically, AD is characterized by the presence of abnormal deposition of beta amyloid peptide (Aβ), which in the brain is strongly correlated with oxidative stress, inflammation, DNA damage, and cholinergic impairment. The multiple mechanisms involved in its etiology create significant difficulty in producing an effective treatment. Neuroprotective properties of genistein and galantamine have been widely demonstrated through different mechanisms; however, it is unknown a possible synergistic neuroprotective effect against Aβ. In order to understand how genistein and galantamine combinations regulate the mechanisms of neuroprotection, we conducted a set of bioassays in vitro to evaluate cell viability, clonogenic survival, cell death, and anti-genotoxicity. Through molecular docking and therapeutic viability assays, we analyzed the inhibitory activity exerted by genistein on three major protein targets (AChE, BChE, and NMDA) involved in AD. The results showed that genistein and galantamine afforded significant protection at higher concentrations; however, combinations of sub-effective concentrations of both compounds provided marked neuroprotection when they were combined. In silico approaches showed that genistein has higher scores than the positive controls and low toxicity levels; nevertheless, the therapeutic viability indicated that unlike galantamine, genistein cannot undergo the action by P glycoprotein (PGP) and probably may be unable to cross the blood-brain barrier. In conclusion, our results show that genistein and galantamine exert neuroprotective by decreasing genotoxicity and cell death. In silico analysis, suggest that genistein modulates positively the expression of AChE, BChE, and NMDA. In this context, a combination of two or more drugs could inspire an attractive therapeutic strategy.

Study Type : Animal Study, In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.