n/a
Abstract Title:

Ginsenoside CK induces apoptosis of human cervical cancer HeLa cells by regulating autophagy and endoplasmic reticulum stress.

Abstract Source:

Food Funct. 2021 May 20. Epub 2021 May 20. PMID: 34013944

Abstract Author(s):

Qi Yin, Hua Chen, Run-Hui Ma, Yuan-Yuan Zhang, Miao-Miao Liu, Kiran Thakur, Jian-Guo Zhang, Zhao-Jun Wei

Article Affiliation:

Qi Yin

Abstract:

Ginsenoside CK (GCK), as a metabolite of ginsenoside Rb1, has been studied for its anti-cancer activity. However, its in-depth anti-cancer mechanism on cervical cancer (CC) HeLa cells has not been fully elucidated. This study found that GCK inhibited the proliferation of CC HeLa cells and caused alteration in cell morphology with an IC50 of 45.95μM. At the same time, GCK treatment blocked the cell cycle in the G0/G1 phase, elevated the reactive oxygen species (ROS) level, decreased mitochondrial membrane potential (Δψm), contributed to Ca2+ leakage, inhibited HeLa cell metastasis, and stimulated the key markers related to apoptosis, mitochondrial and endoplasmic reticulum pathways. GCK altered the regulation of the Caspase family, Bak/Bcl-xl and down-regulated the endoplasmic reticulum pathways (PERK and IRE1α). Starting from flow cytometry and the protein level, we found that autophagy inhibitors inhibited autophagy while promoting apoptosis, and apoptosis inhibitors reduced the rate of apoptosis while promoting autophagy, which proved that GCK can be used as a suitable novel natural product for CC treatment.

Study Type : In Vitro Study
Additional Links
Pharmacological Actions : Apoptotic : CK(6986) : AC(6931)

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.