n/a
Article Publish Status: FREE
Abstract Title:

Ginsenoside Rb1 attenuates cardiomyocyte apoptosis induced by myocardial ischemia reperfusion injury through mTOR signal pathway.

Abstract Source:

Biomed Pharmacother. 2020 Jan 28 ;125:109913. Epub 2020 Jan 28. PMID: 32006902

Abstract Author(s):

Chang-Yan Li, Ping Yang, Yong-Liang Jiang, Zhi Lin, Yu-Wei Pu, Li-Qiu Xie, Lin Sun, Di Lu

Article Affiliation:

Chang-Yan Li

Abstract:

OBJECTIVE: Ginsenoside Rb1 (GRb1) is known to play an effective protection on myocardial infarction, yet its therapeutic mechanism on myocardial ischemia/reperfusion (I/R) injury has remained obscure. Here we sought to investigate the protective mechanism of GRb1 preconditioning on myocardial I/R injury in rats.

METHODS AND RESULTS: We report here that GRb1 preconditioning could improve myocardial I/R injury induced-cardiac functions including LVDP, -dp/dt min and + dp/dt max; however, the heart rate (HR) was maintained at a level comparable to the I/R group. Additionally, in I/R injury group given GRb1 preconditioning, release of myocardial enzymes (CK-MB and Trop l) and CtsB was decreased. Moreover, GRb1 decreased the expression of apoptotic related proteins e.g. cleaved-caspase 3; however, the ratio of Bcl-2/Bax related to anti-apoptosis was decreased. The study was extended by injecting rapamycin intraperitoneally before GRb1 pretreatment. Thus, mTOR pathway was significantly upregulated after GRb1 pretreatment when compared with I/R. Remarkably, the anti-apoptosis protection of GRb1 pretreatment was attenuated by rapamycin. Furthermore, GRb1 effectively reduced the infarct size thus supporting its role in anti-myocardial I/R injury.

CONCLUSIONS: It is concluded that GRb1 preconditioning can ameliorate myocardial I/R injury as manifested by the improvement of cardiac function indices; moreover, release of myocardial enzymes, namely, CK-MB, Trop l and CtsB was reduced. More importantly, we have shown that the protective effect of GRb1 against I/R injury induced cardiomyocyte apoptosis is associated with the activation of mTOR signal pathway as evident by the use of rapamycin.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.