Article Publish Status: FREE
Abstract Title:

Ginsenoside Rb1 protects from Staphylococcus aureus-induced oxidative damage and apoptosis through endoplasmic reticulum-stress and death receptor-mediated pathways.

Abstract Source:

Ecotoxicol Environ Saf. 2021 Aug ;219:112353. Epub 2021 May 23. PMID: 34034046

Abstract Author(s):

Aftab Shaukat, Irfan Shaukat, Shahid Ali Rajput, Rizwan Shukat, Sana Hanif, Kangfeng Jiang, Tao Zhang, Muhammad Akhtar, Imran Shaukat, Xiaofei Ma, Junfeng Liu, Shadab Shaukat, Talha Umar, Masood Akhtar, Liguo Yang, Ganzhen Deng

Article Affiliation:

Aftab Shaukat


Acute lung injury (ALI) is acute uncontrolled inflammation of lung tissue that leads to high fatality both in human and animals. Staphylococcus aureus (S. aureus) could be an opportunistic, versatile bacterial etiology of ALI. Ginsenoside Rb1 (Rb1) is extracted from the Panax ginseng, which displays a wide range of biological and pharmacological effects. However, protective effects of Rb1 in S. aureus-induced ALI though endoplasmic reticulum (ER) stress and death receptor-mediated pathways have not yet been reported. Therefore, present study was planned with the aims to investigate the antioxidant and anti-apoptotic properties of Rb1 through regulation of ER stress as well as death receptor-mediated pathways in ALI induced by S. aureus in mice. In this study, four groups of healthy Kunming mice (n = 48) were used. The S. aureus (80 µl; 1 ×10CFU/10 µl) was administered intranasally to establish mice model of ALI. After 24 h of onset of S. aureus-induced ALI, the mice were injected thrice with Rb1 (40 mg/kg) intraperitoneally six hours apart. Histopathology, enzyme linked immunosorbent assay (ELISA), real time quantitative polymerase chain reaction (RT-qPCR), Immunohistochemistry and western blotting assay were employed in the current study. Our results suggested that Rb1 administration save lungs from pulmonary injury by reducing wet to dry (W/D) ratio, protein levels, total cells, neutrophilic count, reactive oxygen species (ROS),myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (Gpx)1 depletion. Meanwhile, Rb1 therapy ameliorated histopathology alteration of lung tissue and pro-inflammatory cytokines secretion. The gene expression of ER stress marker (PERK, AFT-6, IRE1 and CHOP) were upregulated markedly (P < .05) in S. aureus-instilled groups, which was reduced by Rb1 administration that is reveled from the result findings of the RT-qPCR and immunoblot assay. The results of immunohistochemistry for CHOP indicated the increased expression in S. aureus groups which in turn ameliorated by Rb1 treatment.The mRNA expression demonstrated that death receptor-associated genes (FasL, Fas, FADD and caspase-8) showed up-regulation in S. aureus group. The similar findings were observed for the protein expression of caspase-8, FADD and Fas. Rb1 treatment markedly (P < .05) reversed protein and mRNA expression levels of these death receptor-associated genes when compared to the S. aureus group. Taken together, Rb1 attenuated S. aureus-induced oxidative damage via the ER stress-mediated pathway and apoptosis through death receptor-mediated pathway. Conclusively,our findings provide an insight into preventive mechanism of Rb1 in ALI caused by S. aureus and hence proven a scientific baseline for the therapeutic application of Rb1.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.