n/a
Abstract Title:

Ginsenoside Rg1 ameliorates liver fibrosis via suppressing epithelial to mesenchymal transition and reactive oxygen species production in vitro and in vivo.

Abstract Source:

Biofactors. 2018 May 15. Epub 2018 May 15. PMID: 29761840

Abstract Author(s):

Xiaoyu Wei, Yatang Chen, Wenxiang Huang

Article Affiliation:

Xiaoyu Wei

Abstract:

Liver fibrosis remains a major cause of morbidity and mortality with a complicated etiology and notorious complications, but there is a lack of efficacious therapeutics. Epithelial to mesenchymal transition (EMT) has a central role in the course of liver fibrosis, and thus, prevention of the development of EMT may control and even reverse liver fibrosis. This study aimed to examine the beneficial effect of ginsenoside Rg1, a phrenological active component isolated from Ginseng, and interrogate the mechanism in vitro and in vivo, with a focus on transforming growth factor-β (TGF-β)/Smad and Nrf2-mediated signaling pathways. We employed a TGF-β-induced EMT model in HSC-T6 cells and CCl-induced liver fibrosis in animal. We found that ginsenoside Rg1 significantly reduced cell proliferation and reversed transforming growth factor-β (TGF-β)-induced EMT in HSC-T6 cells; and ginsenoside Rg1 induced cell apoptosis, Ginsenoside Rg1 decreased the cellular level of collagen I and III in HSC-T6 cells, indicating the amelioration of fibrosis. We showed that ginsenoside Rg1 reduced cellular reactive oxygen species (ROS). We also observed similar beneficial effects of ginsenoside Rg1 in vivo. The data showed that ginsenoside Rg1 decreased the level of alanine aminotransferase and aspartate aminotransferase, and collage type IV (IV-C), hyaluronic acid, and laminin in carbon tetrachloride (CCl4)-induced liver fibrotic model. Mechanistically, we showed that ginsenoside Rg1 tuned down the TGF-β/Smad and stimulated Nrf-2 nuclear translocation, which could explain the beneficial effects. In aggregate, our results demonstrate that ginsenoside Rg1 exhibits a protective effect on liver fibrosis via suppressing EMT and cellular ROS level. © 2018 BioFactors, 2018.

Study Type : Animal Study, In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.