Abstract Title:

Ginsenoside Rg3 Restores Hepatitis C Virus-Induced Aberrant Mitochondrial Dynamics and Inhibits Virus Propagation.

Abstract Source:

Hepatology. 2017 Mar 22. Epub 2017 Mar 22. PMID: 28329914

Abstract Author(s):

Seong-Jun Kim, Jae Young Jang, Eun-Jung Kim, Eun Kyung Cho, Dae Gyun Ahn, Chonsaeng Kim, Han Seul Park, Soung Won Jeong, Sae Hwan Lee, Sang Gyune Kim, Young Seok Kim, Hong Soo Kim, Boo Sung Kim, Ji-Hyung Lee, Aleem Siddiqui

Article Affiliation:

Seong-Jun Kim


: Hepatitis C virus (HCV) alters mitochondrial dynamics associated with persistent viral infection and suppression of innate immunity. Mitochondrial dysfunction is also a pathologic feature of direct-acting antiviral (DAA) treatment. Despite the high efficacy of DAAs, their treatment of patients with chronic hepatitis C in interferon-sparing regimens occasionally produces undesirable side effects such as fatigue, migraine and other conditions, which may be linked to mitochondrial dysfunction. Here we show that clinically prescribed DAAs, including Sofosbuvir, affect mitochondrial dynamics. To counter these adverse effects, we examined HCV- and DAA-induced aberrant mitochondrial dynamics modulated by ginsenoside, which is known to support healthy mitochondrial physiology and the innate immune system. We screened several ginsenoside compounds showing antiviral activity using a robust HCV cell culture system. We investigated the role of ginsenosides in antiviral efficacy, alteration of the mitochondrial transmembrane potential, abnormal mitochondrial fission, its upstream signaling, and mitophagic process caused by HCV infection or DAA treatment. Only One of the compounds, ginsenoside Rg3 (G-Rg3), exhibited the notable and promising anti-HCV potential. Treatment of HCV-infected cells with G-Rg3 increased HCV core protein-mediated reduction in the expression level of cytosolic p21 required for increasing the cyclin-dependent kinase 1 (CDK1) activity, which catalyzes Ser616 phosphorylation of dynamin-related protein 1 (Drp1). The HCV-induced mitophagy, which follows mitochondrial fission, was also rescued by G-Rg3 treatment.

CONCLUSIONS: G-Rg3 inhibits HCV propagation. Its antiviral mechanism involves restoring the HCV-induced Drp1-mediated aberrant mitochondrial fission process, thereby resulting in suppression of persistent HCV infection. This article is protected by copyright. All rights reserved.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.