Abstract Title:

Oral administration of Lentinus edodesβ-glucans ameliorates DSS-induced ulcerative colitis in mice via MAPK-Elk-1 and MAPK-PPARγ pathways.

Abstract Source:

Food Funct. 2016 Nov 9 ;7(11):4614-4627. PMID: 27747357

Abstract Author(s):

Limin Shi, Qinlu Lin, Tao Yang, Ying Nie, Xinhua Li, Bo Liu, Junjun Shen, Ying Liang, Yiping Tang, Feijun Luo

Article Affiliation:

Limin Shi


To evaluate the anti-inflammatory effect ofβ-glucans from Lentinus edodes, and its molecular mechanism, the dextran sulfate sodium salt (DSS) induced colitis model of mice and the LPS-stimulated RAW264.7 cell inflammation model were used in this study. 40 ICR male mice were randomly divided into 4 groups: Control, DSS (DSS treated only), DSS + low-βGs (500 mg kg(-1) d(-1)) and DSS + high-βGs (1000 mg kg(-1) d(-1)). The body weight of the mice with Lentinus edodes β-glucan supplementation increased significantly compared to the DSS group and the disease activity index (DAI) was improved in both βG-treated groups. Compared with theDSS group, histopathological analysis showed that the infiltration of inflammatory cells of both βG-treated groups decreased significantly in colonic tissues. Furthermore, oral administration of β-glucans decreases the concentration of malondialdehyde (MDA) and myeloperoxidase (MPO) and inhibits the expression of iNOS and several inflammatory factors: TNF-α, IL-1β and IL-6 as well as nitric oxide (NO) of the colonic tissues. The mitogen-activated protein kinase (MAPK) pathway is closely related to the expression of pro-inflammatory factors. In the DSS-induced colitis model and the LPS-stimulated RAW264.7 cell model, βGs inhibited the expression of pro-inflammatory factors and blocked the phosphorylation of JNK/ERK1/2 and p38; βGs also suppress the phosphorylation of Elk-1 at Ser84 and the phosphorylation of PPARγ at Ser112. Altogether, these results suggest that Lentinus edodes βGs could inhibit the DSS-induced ulcerative colitis and decrease inflammatory factor expressions. The molecular mechanism may be involved in suppressing MAPK signaling and inactivation of Elk-1 and activation of PPARγ.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.