n/a
Abstract Title:

Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis.

Abstract Source:

J Recept Signal Transduct Res. 2020 Mar 13:1-7. Epub 2020 Mar 13. PMID: 32164488

Abstract Author(s):

Shuyun Wang, Ning He, Haiyan Xing, Yuemei Sun, Juan Ding, Liping Liu

Article Affiliation:

Shuyun Wang

Abstract:

Hesperidin has anti-inflammatory and anti-oxidant stress effects, but its functions in chronic obstructive pulmonary disease (COPD) remains unknown. This study analyzed the role of hesperidin in COPD mice, aiming to provide a basis for the hesperidin application.Mice were injected with cigarette smoke extract (CSE) to construct COPD models and then treated with budesonide or hesperidin. Hematoxylin-eosin (HE) and TUNEL assays were used to observe the pathological changes and cell death of lung tissue. The levels of interleukin (IL)-6, IL-8, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) in bronchoalveolar lavage fluid (BLAF), as well as myeloperoxidase (MPO) content in lung tissues were confirmed. The expression levels of SIRT1, PGC-1α, and p65 proteins were measured by western blotting (WB) analysis.CSE induced inflammatory cell infiltration and cell death in the lung tissues of mice, whereas budesonide and hesperidin effectively alleviated these pathological changes. The levels of IL-6, IL-8, and MDA in BLAF and pulmonary MPO content in the COPD mice were effectively increased, while the levels of SOD and CAT in BLAF were decreased, which could be reversed by budesonide and hesperidin. Moreover, the addition of budesonide or hesperidin reliably accelerated the expression levels of PGC-1α and SIRT1 but suppressed the phosphorylation of p65 in COPD mice. In general, high-dose hesperidin had a stronger regulatory effect on COPD mice.Hesperidin alleviated inflammation and oxidative stress responses in CES-induced COPD mice, associated with SIRT1/PGC-1α/NF-κB signaling axis, which might become a new direction for COPD treatment.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.