n/a
Abstract Title:

Hesperidin inhibits synovial cell inflammation and macrophage polarization through suppression of the PI3K/AKT pathway in complete Freund's adjuvant-induced arthritis in mice.

Abstract Source:

Chem Biol Interact. 2019 Apr 4. Epub 2019 Apr 4. PMID: 30954464

Abstract Author(s):

Weizhong Qi, Chuangxin Lin, Kai Fan, Ziyu Chen, Liangliang Liu, Xiaofeng Feng, Haiyan Zhang, Yan Shao, Hang Fang, Chang Zhao, Rongkai Zhang, Daozhang Cai

Article Affiliation:

Weizhong Qi

Abstract:

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovitis. Synovitis can cause joint injury by releasing inflammatory factors and metalloproteinases (MMPs). Therefore, it is necessary to find drugs that can control synovitis in the process of RA. Herein, we investigate the anti-inflammatory effect of Hesperidin (HSN) on fibroblast-like synovial (FLS) cells induced by lipopolysaccharide (LPS) and the protective action of M1 polarization level of synovial macrophages on antigen-induced arthritis (AIA) in order to elucidate the reduction of inflammatory cytokines and MMPs and the inhibition of macrophage activation. The functional effect of HSN on LPS-induced mRNA and protein expressions of inflammatory cytokines and MMPs in FLS cells as well as on LPS-induced macrophage M1 and M2 polarization markers was determined by quantitative real-time PCR (qPCR) or Western blot analyses, respectively. AIA in 2-month-old mice was generated using intraperitoneal injection with HSN (20 mg/kg/day) or LY294002 (20 mg/kg/day). The results show HSN significantly inhibited the LPS-induced gene expression of the inflammatory mediators. Furthermore, treatment with HSN relieved the antigen-induced arthritis and reduced the protein levels of MMP3, MMP9, and MMP13 in FLS and inhibitedthe polarization of macrophages to M1. Based on the results of our analyses, we concluded that HSN has significant anti-inflammatory activities and reduces the potential of MMPs in rheumatoid arthritis and the degree of polarization of macrophages to M1. Through the study of signaling pathways, we established that the inhibition of the PI3K/AKT signaling pathway by HSN may show therapeutic effects in the progression of rheumatoid arthritis.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.